
SURFNET /

Designing Digital
Surface Applications

Frank Maurer, (Ed.)

SURFNET /

Designing Digital
Surface Applications

Frank Maurer, (Ed.)

© All Authors as listed

This book is licensed under a CREATIVE COMMONS License,
available for download at http://dspace.ucalgary.ca/han-
dle/1880/50450.

ISBN 978-0-88953-387-5 (Softcover)
ISBN 978-0-88953-388-2 (PDF)

Published by:

University of Calgary
2500 University Drive, NW
Calgary, AB Canada
T2N 1N4

This book has been published using funds from the Natural
Sciences and Engineering Research Council of Canada
(NSERC), Strategic Network Grants program.

SURFNET /

Designing Digital
Surface Applications

Published by:
NSERC SurfNet
2016
University of Calgary

CONTENTS

INTRODUCTION 7

HUMANIZING THE DIGITAL INTERFACE 17

Using Social Science Theory to Inspire Surface Design:
A Case Study of Proxemic Interactions 26

Effects of Tabletop Embodiments on Coordination 39

Cross-Device Content Transfer in Table-centric
Multi-Surface Environments 53

High-Performance Interfaces for Surfaces 80

Transmogrifi cation:
Casual Manipulation of Visual Information 95

IMPROVING SOFTWARE TIME TO MARKET 105

Understanding Sketching Practices for
Surface Interface Design 112

Designing Tabletop and Surface Applications Using
Interactive Prototypes 140

Pairing for Designing Visualizations 155

Constructive Visualization: A New Paradigm to
Empower People to Author Visualization 169

An Approach to Automated GUI Testing 192

Agile Product Line Engineering Case Study:
Vertical & Horizontal Displays 203

BUILDING INFRASTRUCTURE FOR DIGITAL
SURFACES 221

Society of Devices Toolkit and Projected Pixels 229

Filling the Space Between: Augmenting Multi-Surface
Environments with Low-Resolution Full-Coverage
Displays 241

The Simple Multi-Touch Toolkit 256

SURFACE APPLICATIONS 275

Radiology Image Scrolling 279

Towards At-Home Physiotherapy: Next Generation
Teleconferencing and Surface Based Interventions 289

Discouraging Sedentary Behaviors Using Interactive Play 305

OrMiS: Use of a Digital Surface for Simulation-Based
Training 313

TableNOC: Touch-Enabled Geo-Temporal Visualization
for Network Operations Centers 332

Beyond Effi ciency: Intriguing Interaction for Large
Displays in Public Spaces 347

Surface Applications for Security Analysis 374

BIOGRAPHIES 402

REFERENCES 412

77

INTRODUCTION

8

Figure 1: Visualization of collaboration amongst SurfNet research labs.

9

INTRODUCTION

Frank Maurer
University of Calgary

I
ntroduction
The SurfNet Network was a Canadian research alliance of academic
researchers, industry partners, and government collaborators that
operated from 2010-2015. The goal of SurfNet was to improve the
development, performance, and usability of software applications
for surface computing environments: nontraditional digital display

s surfaces including multi-touch screens, tabletops, and wall-sized
displays. Surfaces naturally support group work and collaboration.

Digital surfaces come in various sizes and provide a large number of
interaction techniques. Mobile surface hardware was popularized by
Apple’s iPhone starting in June 2007 and Android (starting with version 1.0
in September 2008). The tablet market was established by Apple’s iPad in
April 2010. Wall-sized displays form the physically large end of the digital
surface spectrum while digital tables like the original 30 inch MS Surface
(September 2008) and the Smart Table (2008) add a horizontal form factor
to the device ecology. More recently, small form factor surfaces have been
added to the mix in the form of smart watches.

The power provided by digital surfaces, however, can only have a
substantial impact on businesses and homes when software developers can
easily and efficiently create innovative applications for these environments.
Our network focused on this missing link by combining specific research
projects with a continual focus on actually developing surface applications in
collaboration with a large number of industry partners. It is this engineering
and software focus that sets SurfNet apart from other groups working on

10

surface computing.

SurfNet’s mandate was to integrate software engineering (SE) and human-
computer interaction (HCI) in support of application engineering for
digital surfaces – to identify critical requirements, design new engineering
processes, and build new tools for surface-based applications.

SurfNet focused on three research themes driven by the needs of four
application areas (Figure 2).

Figure 2. SurfNet Structure.

Theme 1 “Humanizing the Digital Interface” investigated fundamental
questions around surface interactions and ways to support everyday
practices of the system’s users. Theme 2 “Improving Software Time to
Market” focused on agile development processes in support of designing,
implementing and testing surface applications. Toolkits and application
program interfaces (APIs) that make the life easier for surface application
developers where explored in Theme 3 “Building Infrastructure for Digital
Surfaces”.

SurfNet’s fundamental research was guided by the needs of industrial
applications. Applications also provided test beds and case studies for
the research conducted by the SurfNet team. The application areas were
developed in collaboration with industry partners, and provided promising
vertical markets for digital surfaces. SurfNet researchers were working with
industrial partners on the following application areas:

11

• Planning, Monitoring and Control Environments

• Learning, Gaming, New Media and Digital Homes

• Software Team Rooms

• Health Technologies

The network was structured around collaboration and cross-discipline
research, where projects often had overlapping themes. The interaction
between labs can be seen in Figure 1.

In this visualization, a node (circle) represents a research lab, and the size of
a node represents the total number of research projects from that lab with
collaborators from other labs. The larger the node, the more collaboration
exists between labs. An edge (line) shows that researchers from the
connected labs collaborated on a project. The thicker the edge, the more
collaborators exist.

Result Summary
In the end, our overall network results exceeded our initial expectations. This
is, in some part, due to the ‘gel’ of the researchers and strong collaborative
efforts across and within themes, as well as streamlining administrative
reporting to keep researcher efforts focused on research.

SurfNet was an incredibly prolific network that resulted in over 700
publications and presentations. Over its lifetime, the network supported
more than 400 students, from the undergrad level to postdocs. Our students
moved on to academic positions, research labs in industry and – many – to
professional jobs related to their research. Several of them are now working
at VizworX, a startup company that was spun out of SurfNet.

Overall, SurfNet was very successful in balancing our research goals with
the application needs of our industry partners. We were strategic in our
collaborations and able to find significant research value in industrially
relevant problems. Although the shift from pure research to application-
focused research took some adjustment for those who had not previously
engaged strongly with external partners, it has proven an invaluable
experience for our network. So much so, that most of our researchers
work with several industrial partners, and continue to work on real-world
application problems utilizing results from the network.

Timeline
The first discussions about SurfNet occurred in late 2007 during an NSERC
workshop whose goal was to establish more research collaboration across
Western Canada. Carl Gutwin (Saskatchewan) and I discussed our interests
in a stronger collaboration between human computer interaction and
software engineering researchers. We both saw the rising tide of digital
surfaces and the need for fundamental and problem-driven research on the
software side for these—at that point in time—new devices.

12

To move the initiative forward, we established a cohort of six researchers
from Waterloo, Saskatchewan and Calgary and successfully applied for
NSERC funding for a series of strategic planning workshops. The first
workshop was held in April 2008 and led to the development of a notice of
intent for a strategic network, called SurfNet (submitted in Summer 2008).
After being selected in Fall 2008 to submit a full proposal, the work
really began. The expanded team of twelve researchers came together
in November 2008 to refine the concept and plan the grant proposal.
Sections were written, reviewed and revised multiple times. Feedback from
colleagues and industry partners was gathered and integrated into the draft
proposal. I am extremely grateful to my colleagues that spent countless
hours on preparing the extensive documents required for a Strategic
Network Grant. The proposal was submitted in March 2009. A site visit
followed in summer of the same year. To everybody’s delight, the grant was
approved in October 2009.

The first few months were used to set up the administrative support structure
for the network, to establish our SurfNet Advisory Board and to negotiate
formal agreements between the seven participating universities and the key
industry partners, Smart Technologies and TRLabs (now, TRTech).

The network started officially its research operation in March 2010. Work
initiallu focused on single surfaces of all sizes while in the latter half,
shifted towards multi-surface environments. Research in SurfNet ended in
September 2015, providing time until January 2016 to write a final report
and the book that you are currently reading.

Book Structure
This book illustrates the work of SurfNet researchers and their contributions
to the state of the art by providing a selection of chapters covering the full
spectrum of SurfNet research.

Section 1 presents work from Theme 1 and includes an overview on SurfNet
work in this area written by Drs. Carpendale and Scott.

The next section discusses results from Theme 2 and Drs. Biddle and
Schneider contributed a summary of this theme.

Drs. Graham and Gutwin summarize research from Theme 3 and Section 3
of this book contains selected work from this theme.

Section 4 presents a set of application-focused papers.

Acknowledgments
I would like to express my deepest appreciation to the Natural Sciences
and Engineering Research Council of Canada (NSERC) for supporting our
research network and providing long-term predictable funding to SurfNet

13

researchers and their students. Their investment provided the basis for
substantial progress and innovation in SurfNet’s research area.

Our network’s progress would have been impossible without the strong
engagement of numerous industrial partners that collaborated with our
researchers and helped focus our work. We are especially grateful for
the contributions of Smart Technologies and TRTech. Both organizations
were involved with the network from before its inception, helped shape its
structure and direction, and provided substantial financial support for our
work.

I am deeply grateful to the University of Calgary, Carleton University,
McGill University, Queen’s University, the University of British Columbia,
the University of Saskatchewan, and the University of Waterloo for their
substantial and ongoing financial and administrative support to our research
network. Their administrative staff was instrumental for the success of the
network and are often the unsung heroes in academia.

The research direction of our network was strongly impacted by the external
members of our SurfNet Advisory Board. For their willingness to volunteer
many hours in support of the network, I want to express my sincere gratitude
to Pekka Abrahamson, Andrea Benoit, Hakan Erdogmus, Tony Florio, Bruce
G. Gilkes, Michael Haller, Rainer Iraschko, Gerald Morrison, Kori Inkpen
Quinn, Mary Beth Rosson, Helen Sharp, Janice Singer, Dave Thomas, and
Jennifer van Zelm.

While a strategic network is required to have a principal investigator, its
success depends on the dedicated and collaborative work of a group of
peers. My co-investigators Robert Biddle, Sheelagh Carpendale, Nick
Graham, Saul Greenberg, Carl Gutwin, Joerg Kienzle, Philippe Kruchten,
Regan Mandryk, Stacey Scott, Kevin Schneider, and Jonathan Sillito are
leading thinkers in their field and the driving force behind our network’s
success.

A big “thank you” goes to colleagues from all over the world that joined
our network over time, providing deep insights during discussions and
collaborating with network researchers on specific research projects.
Their expertise helped our network accomplish its goals: Scott Bateman,
Anastasia Bezerianos, Jeff Boyd, Sonia Chiasson, Christopher Collins,
Pierre Dragicevic, Elise Fear, Jean-Daniel Fekete, Mark Hancock, Rashina
Hoda, Pourang Irani, Petra Isenberg, Timothy Lethbridge, Angela Martin,
Miguel Nacenta, Neil Randall, Ehud Sharlin, Anthony Tang, and Xin Wang.

The real stars in SurfNet were our students and postdocs. Professors in
Computer Science realize that most of the work is done by their dedicated
team of creative and innovative “highly qualified personnel” while the prof
tries to find support for them. Students develop ideas, implement software,
run studies and write papers. Sometimes they move mountains, always they

14

expand knowledge of humanity. SurfNet would not have been possible
without their tireless efforts and enthusiasm.

A network cannot be run without the support of dedicated administrative
support and I want to express my sincere thanks to Grace Whitehead
and Jennifer Harper that served in that role at the early stage of the
network. Jeff LaFrenz was key to the success of our network. In his role as
Business Development Manager, he tirelessly worked on finding potential
industry partners for our network researchers, opening doors and creating
connections. His dedication to technology transfer and innovation is proven
by his willingness to now serve as the CEO of VizworX, SurfNet’s spin-out
company.

I cannot express the amount of gratitude that Robin Arseneault deserves
from me and the rest of SurfNet. In her role as SurfNet Network Manager,
she took on an immense workload on capturing data, reporting, accounting,
writing and organizing. She streamlined required administrative processes
as much as possible so that researchers could focus on what they do best:
conduct research. The hours that she has spent on our final report as well as
on designing and copy-editing this book are beyond expectations. Not only
is she one of the best organized people that I have ever met, she is also an
award winning artist.

15

16

1717

HUMANIZING
THE DIGITAL
INTERFACE

18

19

HUMANIZING
THE DIGITAL INTERFACE

Sheelagh Carpendale, University of Calgary
Stacey Scott, University of Waterloo

Focus Areas:
 1.1 Understanding the Fit Between Surfaces, Humans, & Human
 Activity
 1.2 Interacting with a Single Surface
 1.3 Interacting with Multiple Surfaces
 1.4 Adapting Interface Concepts to Real-world Settings

I
ntroduction
Theme 1 research focused on expanding our understanding of
the fundamentals of surface interaction. Interacting with digital
surfaces is fundamentally different than interacting with mouse-
and-keyboard-based computers like desktops or laptops. This has
required new knowledge about how best to design interfaces,

 interaction techniques, and applications that provide the most
effective use of the new interaction capabilities provided by digital surfaces.
Moreover, across the course of the SurfNet research program, there has
been exciting and rapid changes in the variety of “surface” computing
devices, and related interaction modalities available for these surfaces.
Small, personal multi-touch surfaces (e.g. smartphones and tablets) have
seen wide-scale adoption in Canada and other Western cultures. New
consumer hardware (e.g. Microsoft Kinect, Leap Motion) enabled low-
cost whole- and part-body interactions with large surfaces, significantly
expanding possible interactions on digital walls and tabletops, beyond
touch-based interaction. SurfNet research, throughout all three Themes,

20

played a significant role in extending the capabilities and application use of
the emerging input and surface device hardware to enable more extensive
interfaces and interactions across a wide variety of application contexts.

As the overarching goal of Theme 1 research was to design, develop and
evaluate interaction for surface technologies that supports and participates
in, rather than ignores, the everyday-world practices of people, these
expanding hardware capabilities usefully expanded the “surfaces” toolbox
which to draw from during our design and development activities. As we
describe in the following focus area discussions, this expanded toolbox
led to innovations, such as multi-surface interfaces that enable the use of
smartphones or tablets in conjunction with large digital walls or tabletops
during a collaborative analysis task, and large public wall displays that
“react” to people as the approach they display (even before they touch the
surface).

Important new HCI questions emerged along with this new hardware, such
as when is a small surface beneficial?, when is a large surface beneficial?,
and how can different surface form factors and interaction modalities best
be used together to provide an effective user experience? Theme 1 has
adapted to investigate these emerging questions by studying and creating
interfaces, interaction techniques, and whole applications for a wide range
of surface form factors and interaction capabilities in a variety of different
application domain contexts. The network approach to SurfNet research
enabled this agile research approach as it required access to a substantial
amount of different surface hardware devices and access to a variety of
application contexts. This breadth of research, and extensive knowledge
gained on the value and limitations of digital surfaces (of all forms) in
different contexts, is reflected in the following focus area discussions.

The primary purpose of Focus Area 1.1 was to understand the fit between
surfaces, humans, and human activity. Focus Areas 1.2 and 1.3 targeted
understanding the advantages and limitations of single and multi-surface
set-ups respectively, and how best to leverage their unique advantages
to support human activity. Focus Area 1.4 focused on adapting interface
concepts to real-world settings, specifically how best to adapt theoretical or
idealized interface concepts to particular application areas.

1.1 Understanding the Fit between Surfaces, Humans, and Human Activity
This focus area targeted fundamental research into human activities with and
around surfaces. Here we improved our understanding of the relationships
between people and all types of surfaces, from the traditional to the digital,
from large to small, from single to multiple, in co-located and distributed
venues appropriate to our application areas. We closely studied human
abilities that are affected by or involved directly with the use of surface
technologies.

A significant amount of activity in this focus area explored the use of surfaces—

21

and increasingly multi-surface set-ups—to support collaborative and social
endeavours, especially in co-located settings. For example, contributions
were made in understanding the collaborative and cognitive benefits of large
tabletop surfaces during group creativity tasks (Hajizadehgashti 2012; Scott
et al. 2015); in understanding the cognitive and communicative benefits
that large surfaces and multi-surface environments support collaborative
sensemaking (i.e. data triaging and analysis) (Wallace et al. 2013; Kuzminykh
et al. 2015); and in applying social theories of proximity, body positioning,
and territoriality to improve large and multi-surface interactions (Chen et al.
2012; Marquardt et al. 2012a; Marquardt et al. 2012b; Scott 2014).

Facilitated by the recent innovations in input and surface hardware, we
used our improved understanding of how people interact with and around
surfaces to springboard inventions of new interaction techniques and
information presentation methods for surfaces. Important contributions
were made in exploiting human proxemics as interaction triggers, for
instance, to better engage passersby with large surfaces in public settings
(Greenberg et al. 2011; Marquardt et al. 2012a; Marquardt and Greenberg
2012; Marquardt et al. 2012b; Wang et al. 2012; Marquardt 2013; Mostafa
et al. 2013). This research has had significant impact both internally within
SurfNet and externally among the international surface computing research
community: proxemic interactions was the topic of a dedicated invited
Dagstuhl seminar workshop in 2013 (Greenberg et al. 2014b) and has
contributed to numerous publications by SurfNet (Boring et al. 2014; Brudy
et al. 2014; Greenberg et al. 2014a; Mueller et al. 2014; Cheung and Scott
2015a; Cheung and Scott 2015b; Ledo et al. 2015) and external researchers
in subsequent years, e.g., (Henrik Soerensen and Kjeldskov 2013; Raedle
et al. 2014; Dingler et al. 2015; Jakobsen and Hornbaek 2015; Zhou et al.
2015). Another key contribution in this area was the extensive exploration
of novel information visualization techniques for large and multi-surface
set-ups to facilitate both individual and collaborative analysis and decision-
making around large and/or complex data sets (Anslow et al. 2013; Bhaskar
et al. 2014; Huron et al. 2014; Oskamp et al. 2015).

1.2 Interacting with a Single Surface
Our research in this theme focused on interaction issues with single
surfaces: developing new input and interaction techniques; creating
effective visualizations and feedback for surface interactions; generating
new interfaces that promote individual and group information organization
and sharing; and, exploring the interaction issues that stem from displaying
information on, and interacting with, different surface form factors including
horizontal, vertical, small, and very large.

Early research outcomes in the area of interface and interaction design from
SurfNet and other surface computing researchers has allowed development
of more advanced surface software applications designed to address
real-world tasks. This shift exposed the need for more sophisticated and
nuanced surface interfaces and interactions that better supported complex

22

task and social interactions. SurfNet adapted to meet this need. Over the
past few years significant research activity focused on designing more
effective feedback and awareness mechanisms to improve the usability of
surface applications across a variety of different surface form factors. For
example, several of our projects focused on developing interfaces that more
proactivity respond to people’s interactions on and around the surface to
help teach novice users what the system has to offer and how to effectively
use the system, particularly in the case of large surfaces installed in public
settings (Seto et al. 2012; Hinrichs et al. 2013; Cheung and Scott 2015a;
Cheung and Scott 2015b). Contributions were also made in designing
interface elements that help people understand and maintain awareness of
automated system changes during ongoing collaborative tabletop activities
(Wallace et al. 2012; Chang et al. 2014), and in using tactile feedback to
help mediate group coordination when using virtual embodiments (e.g.
virtual arms that allow for extended reach at a large surface) during tabletop
collaboration (Doucette et al. 2013).

Research in this focus area also investigated the use of large surfaces as a
collaboration tool, beyond their task-specific application features. Consistent
observations by SurfNet researchers have revealed that when groups gather
around a large wall or tabletop surface, they often want to “draw” over
the task interface to help strategize, coordinate, or communicate about
the task at hand. SurfNet researchers developed various mechanisms to
support such abstracted “communication” interactions, including providing
annotation capabilities directly into a task application (Bortolaso et al.
2014), providing an additional “add-on” program that interfaces with other
software applications to provide common collaboration tools, including an
annotation layer over the application software (Simonyi 2015), and visualizing
above-the-table gestures in a tabletop interface to better contextualize any
communication gestures made during group work (Genest and Gutwin
2012; Genest et al. 2013).

Finally, recent SurfNet work also included projects to improve individual
interaction with small surfaces such as smartphones. For instance,
contributions were made in improving command selection on smartphones
using knowledge of ergonomics and common device grip behaviour
(Gutwin et al. 2015), and in developing improved CAPTCHA interaction (a
common computer security method) optimized for multi-touch smartphone
use (Reynaga et al. 2015).

1.3 Interacting with Multiple Surfaces
While single surfaces provide many advantages for supporting groups,
each surface form factor (e.g., large, small, horizontal, vertical) has benefits
and limitations. By combining multiple surfaces together we can take
advantage of the specific properties of each surface type, thus enabling
interfaces that are more efficient and powerful than the sum of their parts.
The increased variety of surface form factors and interaction capabilities,
along with the greater commercial availability of surface devices, led to a

23

substantial growth in research on multi-surface environments (MSEs) within
SurfNet. This MSE research was also enabled by early research outcomes on
single surfaces that addressed many of the basic device-specific challenges:
with a stronger understanding of how to design for individual surfaces, we
were better able to focus on more complex multi-surface interfaces and
interactions.

Our extensive investigations on MSEs over the past few years also revealed
just how challenging designing effective multi-surface interfaces and
interactions can be: different surface devices have different interaction
affordances and capabilities that must be combined in meaningful and
usable ways. As MSEs are still relatively rare in practice, there remains a lack
of design intuition about what does and does not work in given application
contexts. Despite these complexities, we made significant contributions in
this area, and were leaders in the international surface computing and HCI
fields in the development of novel MSE interfaces and interaction techniques,
evidenced by recent workshops and tutorials led by SurfNet researchers on
these topics (Marquardt 2013; Anslow et al. 2014; Greenberg et al. 2014b;
Isenberg et al. 2015; Scott et al. 2015). Our contributions in this area include
examining the benefits and limitations of different device configurations,
device form factors, and cross-device interactions during group work in
different task contexts (Wallace 2011; Marquardt et al. 2012a; Marquardt et
al. 2012b; Wallace et al. 2013; Scott 2014); developing new user and device
tracking techniques (Marquardt et al. 2011; Genest et al. 2013; Azazi et al.
2014), and interfaces to leverage those tracking techniques, for instance,
to facilitate interconnectivity of devices in a large space (Marquardt et al.
2012a; Chokshi et al. 2014; Scott et al. 2014).

While most multi-surface projects targeted co-located environments,
contributions were also made in the area of distributed surfaces. These
projects primarily focused on facilitating group communication at remotely
connected large surfaces, for example, by displaying arm shadows that
indicated a remote collaborator’s above-the-table gestures during remote
tabletop interactions (Genest and Gutwin 2012; Genest et al. 2013), or
utilizing whole-body interaction and large surfaces to build shared virtual
scenes that enable active freeplay between friends over a distance (Ledo
et al. 2013).

1.4 Adapting Interface Concepts to Real-world Settings
This focus area—which combined research efforts from focus areas 1.2
and 1.3 into the exploration of possible interactions and interfaces in real-
world situations—saw increasing activity over the lifespan of SurfNet. The
overarching goal for this focus area was to facilitate the use of SurfNet
interface designs in feature-rich surface application interfaces capable of
supporting complex human activity in real-world settings. In the past few
years, the range of targeted application areas grew increasingly broader.
This increased breadth was largely driven by the diversity of interested
application partners, demonstrating the wide appeal of surface computing

24

to real-world partners.

A highly active area of research was applying and adapting surface
interfaces and interactions to surface software applications optimized for
different usage contexts. Real-world application areas included music
and media, gaming, health, command and control, creativity and design,
browsing library holdings, air traffic control, computer security, security
analysis, data analysis, and geospatial terrain analysis. We gained significant
practical knowledge through these projects about utilizing surfaces in real-
world settings. For example, there is an important design tradeoff to make
between providing “simplistic” interfaces (e.g. visually streamlined, with
minimal touch interaction) and providing sufficient accuracy and precision
for the task at hand. For instance, in a project focused on supporting
simulation training exercises for the Canadian Army, significant design
iteration occurred around the design of a touch-based route-planning
feature to provide the right mix of simplicity, precision, and utility for end-
users (military personnel) who had limited experience with touch devices
(Bortolaso et al. 2014).

Another contribution of this focus area was to invent new ways of using
surfaces to address real-world problems. For example, many military
missions rely on accurate terrain analysis; however, many soldiers do not
know how to read traditional two-dimensional (2D) maps containing contour
lines (i.e. shaded colours representing slope, relief, elevation, etc.). One
project explored a multi-surface system that provided a real-time viewshed
(showing the areas of visibility from a certain geographical ground position),
a three-dimensional (3D) panoramic view, and a “helicopter” view controlled
by an optically tracked tablet (Oskamp et al. 2015).

Significant contributions were also made in designing more effective
interfaces and interaction techniques for large displays installed in public
settings—a setting where potential users encounter significant social and
interaction barriers to using large, especially unfamiliar, surfaces, and thus,
tend to avoid using them altogether (Cheung et al. 2014). Across a number
of projects, we explored different mechanisms to reduce these barriers and
successfully engage passersby in public settings such as lobbies, museums,
and libraries (Hinrichs et al. 2011; Thudt et al. 2012; Cheung and Scott
2015b; Thudt et al. 2015).

Conclusions
Over the lifespace of SurfNet, the scope and complexity of projects have
significantly increased due in part to the strong basic research outcomes
of our early SurfNet efforts and in part to the changing technological
landscape in the consumer domain and broader research fields. This
foundation enabled us to undertake much more complex surface computing
research, especially in the area of multi-surface interfaces and interactions
than previously possible. We made substantial progress on our application
goals of exploring the potential of surfaces in a wide variety of application

25

contexts; first in our target application areas, and then much more broadly
to other domains such as healthcare, farming, music, computer security,
etc., as the success of our early research became known outside of SurfNet
and opportunities to work with increasingly diverse application partners
arose.

26

Using Social Science Theory to Inspire Surface
Design: A Case Study of Proxemic Interactions

Saul Greenberg and Nicolai Marquardt

Introduction
Designers of novel surface interaction techniques and applications are
influenced by many factors. Some designers follow a mostly iterative
approach to system refinement, where they seek to improve existing
methods by exposing and solving inefficiencies. Some try to better
understand user needs such as through observational studies and by using
software engineering techniques to craft requirements analysis. Some base
their work around the affordances of technical innovations, where these
new technologies expose a plethora of design opportunities that were not
previously possible. Some incorporate advances made in other interaction
fields to surface design, where methods developed elsewhere are adapted
to the surface medium. Some rely on intuitions and personal experiences,
where they generate ideas, sift through them, and apply, test and refine
what they consider to be the best candidate designs.

Our own approach takes a somewhat different direction: we use social
science theory to both guide and inspire our research on surface designs.
Our basic premise is that our understanding of human-human interaction
can be applied – albeit with some caveats – to human-computer interaction
(HCI).

Our design process generally follows five stages. These stages are not
purely sequential. All influence one another: they often overlap and may
be done in parallel. Earlier stages may be revisited based upon insights
garnered in later stages.

Stage 1. Identify candidate social science theories potentially relevant
to surface interaction. This is by no means straight-forward. There are a
plethora of social science theories, and most are of little value to aid design
thinking. As well, because these theories explain human-human interaction
rather than human-technical interaction, they must be read with a creative
eye. This can only work if it is done actively. For every theory considered,

27

for example, it is useful to ask “what could we do if one or more of the
actors in this theory was technology (such as a large display) rather than a
person?”. From that question, one can then brainstorm scenarios where
the designer could try to apply that theory to a design situation. Of course,
this also begs the question of where in social sciences to look. Our own
experiences suggests that helpful theories can be found by reading social
science texts and primers introducing theories, as these are often written at
a level accessible by designers and software technologists. As well, others
in the HCI field may have already suggested a link between social theory
and technological design.

Stage 2. Translate that social science theory into a form applicable to
technological design. Social science theories are cast in their own language,
with their own jargon, emphasis and interpretation. They target people
rather than technology. They are rarely usable by designers ‘out of the box’,
simply because they do not address technological innovation or design.
They often include detail that cannot be applied to design situations.
Consequently, it is important to recast the theory into a form that a designer
can use. This could be done, for example, by simplifying the theory into its
core concepts, and recasting select portions and details of that theory into
a form applicable to the technological setting.

Stage 3. Quick and dirty prototyping. It is one thing to know theory, but
quite another to understand its ramifications to design. Our approach
advocates getting our hands dirty as quick as possible, as we believe this
to be the best way to reveal design opportunities afforded by that theory.
This means brainstorming ideas (e.g., through sketching), and actually
building a variety of simple proof of concept prototypes that can be tried
out. By doing so, the designer gains immediate feedback on the utility of
the theory. If the prototypes are uninspiring, or are unnatural during use, or
do not seem to resonate, then it is likely that the theory is not as applicable
to design as predicted. Conversely, if the prototypes generate excitement,
feel natural during use, are easily explained to others, and suggest even
more prototypes, then it is likely that the theory has considerable potential
to design. At the same time, the designer is exposed to the technical
challenges of the domain (i.e., software and hardware development), which
gives insight into tool development as done in the next step.

Stage 4. Retrenchment: Building a toolkit for rapid development. It may
be (and often is) the case that applying that theory to actual systems
development may require hardware that is not readily available or suitable,
and/or that software development is tricky. While it is likely possible that a
few prototypes can be built by brute force (stage 3), varying those prototypes
can be excessively time-consuming, thus hindering the iterative process. At
this point, we advocate retrenchment, where – based on implementation
experiences so far – the design team turns to developing a toolkit that
will dramatically simplify the programming effort of these systems. This
means that concepts that are core to the application of the theory should

28

be embedded into the system, where a programmer can invoke its features
through a few lines in an application programmer’s interface (the API). The
primary motivation of toolkit development is to allow the designer and
programmer to concentrate on the design and iteration of the system rather
than its underlying plumbing.

Stage 5. Robust prototype development and full research applications. At
this point, the designer should have a good understanding of the theory,
along with experiences applying it to particular situations. The designer will
also have a good toolkit for developing applications within the genre. This
is now the time for the designer to pursue developing robust prototypes
and applications, including exploring the nuances of interaction techniques.
In this final stage, the designer can focus on particular problem areas and
nuances within the usual human-computer interaction test/iterate cycle.

In the remainder of this paper, we will use the above stages to introduce our
Surfnet project on proxemics interactions, which was built upon the social
science theory of proxemics.

Stage 1. The Social Science Theory of Proxemic Interactions
In 1966, anthropologist Edward Hall coined the word ‘proxemics’, an area
of study that identifies the culturally-dependent ways that people use inter-
personal distance to understand and mediate their interactions with other
people (Hall, 1966). While his theory of proxemics has many aspects to it, its
most basic forms define four proxemic zones that characterize how people
interpret inter-personal distance. While aspects of these zones are culturally
dependent, western culture typically defines distances within these zones
as: intimate (~0–1.5’), personal (1.5–4’), social (4’– 12’) and public (12’–25’).
As these names imply, closer distances lead to increasing expectations of
interpersonal engagement and intimacy. In practice, people adjust these
distances not only to match their social activities, but to raise defense
mechanisms when others intrude into these zones. This is something we
understand intuitively, where people often adjust their positions to best fit
the dynamics of their interpersonal interactions.

Hall also described how features within the space affect people’s interactions.
Fixed features include those that mark boundaries (e.g., entrances to a
particular type of room), where people tend to organize certain kinds of
social activities within these boundaries. Semi-fixed features are entities
whose position can affect whether the space tends to bring people together,
or move them apart (for example, the arrangement of chairs).

To understand why this theory is relevant, we need to revisit the Ubicomp
vision. In 1991, Mark Weiser – recognized as the founder of Ubicomp – saw
Ubicomp as technologies that disappear, where they ‘weave themselves
into the fabric of everyday life until they are indistinguishable from it’, where
computers are integrated ‘seamlessly into the world’ (Weiser, 1991). He

29

envisioned many computers per person, all inter-connected, and all with
varying form factors. Signifi cantly, Weiser envisioned the day when devices
would know about their location and surroundings, where their behavior
and function would depend to some extent on their environmental context
(we now call this context-aware computing). As time passed, modern
technology is now realizing parts of Weiser’s vision, what with the common
use of smart phones, tablets, laptops, large digital touch surfaces, and other
information appliances. Many devices also exploit location-awareness,
where the combination of global positioning systems (GPS) and compass
information (location) is used in tandem with knowledge about the physical
environment (e.g., nearby businesses and services).

Yet Weiser’s vision of seamlessness remains somewhat elusive. For example,
consider the digital ecology of the living room in Figure 1. It includes
various devices (the digital surface, the information appliances, and the
things people carry such as smart phones and tablets). While most devices
are networked, actually inter-connecting these devices is painful without
extensive knowledge, and requires time to confi gure and debug. Even
when connected, performing tasks across devices is tedious, often requiring
complex navigations across interfaces. In practice, this means that – from a
person’s perspective – the vast majority of devices are blind to the presence
of other devices. What makes this even more problematic is that these
devices are also blind to the non-computational aspects of the room – the
people, other non-digital objects, the room’s semi-fi xed and fi xed features
– all which may affect their intended use.

Figure 1: A typical Ubicomp ecology, including a mix of people, digital surfaces,
portable personal devices, and information appliances (Ballendat, Marquardt and

Greenberg 2010).

30

This is where we (along with a few others) saw the role of proxemics theory
(e.g., see also Vogel and Balakrishnan 2001; Ju et. al. 2008). The main
idea is: just as people expect increasing engagement and intimacy as
they approach others (as suggested by proxemics theory), so should they
naturally expect increasing connectivity and interaction possibilities as they
approach devices, and as they bring their devices in close proximity to each
other and to other things in the ecology.

Stage 2. Translating Proxemics Theory to Technological Design
Proxemics theory relies both on people’s ability to sense their environment
and others within it, and on people to interpret what they see to adjust their
social behaviors. Technology, of course, is much more limited.

We thus had to translate proxemics theory into a form that we could use as
our design foundations. The fi rst question was “what should the system be
able to sense?” where our constraints were that these sensing capabilities
could be something we could operationalize and implement, that is, as
proximity measures in the form of variables returned by the system. Our
own notion of proxemic dimensions for Ubicomp are characterized in Figure
2 and explained below, where we consider proxemics measures between
entities (entities can be people, devices, and/or physical features in the
environment). As we will see, each of these dimensions can also vary by
fi delity and whether they return discrete or continuous values.

Figure 2. Five proxemics dimensions for Ubicomp (Greenberg et. al. 2011).

Distance between entities is a fundamental notion in proxemics theory. We
normally think of distance as a continuous measure, such as a value returned
between 0 - 6 feet. However, distance can also be discrete, for example, a
measure of what zone an entity is in with respect to another entity. In the
simplest case, distance can be considered as a binary measure, e.g., one
entity is either near or not near to another entity.

Orientation between entities is also fundamental in proxemics theory. For
example, the ‘social distance’ between two people facing towards vs. away
from one another is extremely different, even though the physical distance
is identical. Orientation thus captures nuances not provided by distance
alone. It too can be continuous (e.g., the pitch/roll/yaw angle of one object
relative to another), or discrete (e.g., facing towards, somewhat towards, or
away from the other object). Of course, orientation only makes sense if an
entity has a ‘front face’ to it.

31

Movement between entities captures the distance and orientation of an
entity over time, where different actions can be taken depending on (for
example) the speed of motion, and/or whether one entity is moving and
turning towards vs. away from another entity. People naturally consider
movement as part of the social distance dynamics of proxemics. Technology
must be informed about that movement as well.

Identity uniquely describes the entity. While proxemic theory is applied
to people, we expected we would apply it to a broad range of technical
devices as well as physical artifacts within the environment. Thus design
requires some degree of entity identification. Identity can range from a
detailed measure including exact identity and attributes of that entity, to
a less detailed measure such as an entity’s type, to a minimal measure that
simply discriminates one entity from another.

Location context describes the physical context that the entities reside in.
People naturally consider location as part of their behaviors, for example,
how a couple adjusts their distancing in a family room versus in a public
setting such as a store. Yet technology is blind to context unless explicitly
informed. Location measures can also capture contextual aspects, such as
when an entity crosses a threshold (a fixed feature) marking its presence in a
room. Location is important, as the meaning applied to the four other inter-
entity measures may depend on the location’s context.

While we will not delve into it here, our choice of these particular measures
were heavily influenced by our thinking about how proxemics theory could
address known challenges in designing Ubicomp systems (Marquardt
and Greenberg, 2012). For example, one of the Ubicomp challenges we
considered was establishing connections between devices as a consequence
of proximity (e.g., a mobile phone and a surface). A simple thought exercise
reveals the importance of distance, movement, and orientation to avoid
accidental connections: i.e., a person’s intension to connect the phone to
the surface would be triggered by pointing and moving the phone towards
the surface until a particular close distance is reached. Identity is, of course,
important for security reasons. Location context is similarly important, for it
may allow some people to connect (e.g., an employee using a board room,
where the connection re-establishes particular information) but disallows
others (e.g., an unescorted visitor).

Stage 3. Quick and Dirty Prototyping
We then developed many quick and dirty prototypes, often using some quite
simple technologies. Various examples are described in detail in Marquardt
and Greenberg 2015 and in Greenberg et. al. 2011, as well as in many
individual research publications. For example, one of our first prototypes
used simple off the shelf range finders as a way to control connection and
privacy in an always-on media space (Greenberg and Kuzuoka, 1999).
The idea was that people would be able to see and hear each other in
increasing fidelity as a function of both actor’s proximity to their displays.

32

Our second prototype realized a cartoon actor (a face) on a large surface.
Using a few fairly simple proxemics rules, the face would react to people’s
distance, movement and orientation. For example, its eyes would track
the moving person. The face would verbally great an approaching person,
smile as they came closer, frown and get annoyed if they were too close,
be sad when they turned away, and so on (Diaz-Marino and Greenberg
2010). We found this application interesting because (a) people with no
technical background immediately understood the system’s behaviors in
terms of how it reacted to their distance, movements, and orientation, and
(b) this was in spite of the system following only a few simple proximity-
based rules to drive its behavior (it had no artificial intelligence). For our
third prototype, we wanted to see what we could do if we added proximity
awareness to a traditional presentation tool running on a vertical surface,
where the speaker would not have to use a second display or a keyboard.
We focused on two specific capabilities: we wanted to make it easier for
a speaker to access their speaker notes, and we wanted to make it easier
for a speaker to control their slides. For example, when the speaker faced
the audience, slides were presented in full. However, if the speaker faced
the screen and stood close to one of its sides, speaker notes along with a
few navigation controls appeared in the corner closest to the speaker. If
the speaker shielded the display from the audience by standing near the
middle of the surface, a scrollable deck of slide thumbnails appear, allowing
the speaker to rapidly switch to any slide.

These and other applications influenced our thinking about proxemics.
They helped solidified our translation of proxemic theory into operational
variables (as discussed in the previous stage), and they also influenced
our design of the first version of our proximity toolkit (the following stage,
discussed next).

Stage 4. Building a Toolkit for Rapid Development
Building proxemics-aware applications are challenging. While rough
measures of distance can be captured by range finders, their accuracy
proved less than ideal. Capturing other parameters, such as orientation and
directional movement proved even more difficult. Programming raw input
streams from these sensors was tedious. Simply put, the technical effort of
building these systems meant that we spent more time programming the
underlying plumbing, which came at the expense of exploring the design
space of proxemics.

We turned to a new goal, where we wanted to simplify the exploration
of interaction techniques by supplying fine-grained proxemic information
between people, portable devices, large interactive surfaces, and other non-
digital objects in a room-sized environment. Our solution was the Proximity
Toolkit (Marquardt, Diaz-Marino, Boring and Greenberg 2013). The toolkit
offered three key features. First, it facilitated rapid prototyping of proxemic-
aware systems by supplying developers with the orientation, distance,
motion, identity, and location information between entities, all accessible

33

via simple-to-program callbacks. Second, it included various tools, such
as a visual monitoring tool, that allows developers to visually observe,
record and explore proxemic relationships in 3D space, which helped them
understand the data being generated by the toolkit before any coding was
actually done. Third, its fl exible architecture separated sensing hardware
from the proxemic data model derived from these sensors, which meant
that a variety of sensing technologies can be substituted or combined to
derive proxemic information. We initially based our hardware infrastructure
on the Vicon Motion Capture system, where the system would return
millimeter-accurate data about an entities position in 3D space. However,
later versions incorporated other sensing systems, such as the lower-cost
Optitrack motion capture system, and the consumer-affordable Microsoft
Kinect depth-sensing camera.

Callbacks follow standard programming conventions to track events. For
example, consider a simple scenario where a programmer wanted to display
information only if a person was facing the display. The callback would be
something like:

We developed several versions of the toolkit over a few years. While
it took considerable time and effort to do so, the result was well worth
it. Programmers with only a brief introduction to the toolkit were able to
create proxemics-aware applications almost immediately. More importantly,
complex applications could be built, where programmers could concentrate
and iterate over the design of particular proxemics-aware systems.

Stage 5. Robust Design and Development.
By this stage, we had developed a solid understanding of proxemics and
how it could be applied to the design of systems supporting proxemics
interactions. We also had a toolkit that let us actually build, maintain, and
iterate through fairly complex proxemics-aware systems. A few examples
illustrate what we could do.

Proxemic Media Player is a media player that reacts to the proximity of
one or more people in a room (Ballendat, Marquardt and Greenberg 2010).
Figure 3 illustrates only a few of its functions. At distance (a), the person
enters the room. The media player recognizes both the person’s identity
and entrance, activates the display, shows a short animation, and then
displays four large video preview thumbnails held in that person’s personal
media collection at a size suitable for distance viewing. At distance (b) the
person is moving closer to the display. The display responds by showing an

34

increasing number of his videos by continually shrinking the video preview
thumbnails and titles to fi t. At distance (c), the person is very close and
he can select a video to watch by directly touching its thumbnail, which
shows him more about the selected video: a preview that can be played
and paused, with detailed title, authors, description and release date. The
text is small, but quite readable at this close distance. Finally, at distance
(d) the person moves away from the screen to sit on the couch. The system
responds by expanding the currently selected video to play in full screen
view. When seated at the couch, the person can also point his mobile phone
towards the display. The phone is recognized as a pointing device, which
in turn can be used to control the media player. If a second person enters
the room, the video shrinks slightly to expose the title of the video being
played. If that second person then approaches the screen, a description of
the video is revealed. When all people leave the room, the video playback
stops.

Figure 3. Proxemics Media Player. The position of a person in the room is shown
at the top, where letters correspond with what the surface is displaying at those

distances (Ballendat, Marquardt and Greenberg 2010).

The Gradual Engagement design pattern is a generalizable interaction
technique that describes what we believe is a successful way to exploit
proximity (Marquardt, Ballendat et al., 2012). The general idea is that we
can design devices and interfaces that interpret decreasing distance and
increasing mutual orientation between a person and a device within a
bounded space as an indication of a person’s gradually increasing interest in
interacting with that device. The generalized gradual engagement design
pattern includes three key phases:

• Phase 1: background information supplied by the system provides
awareness to the person about opportunities of potential interest when
viewed at a distance;

35

• Phase 2: the person can gradually act on particular opportunities
by viewing and/or exploring its information in more detail simply by
approaching it; and

• Phase 3: the person can ultimately engage in action if so desired.

This pattern is directly inspired by the proxemic theory mentioned
earlier, and characterises what we thought was the ‘best’ of how we, and
others previously, apply proxemics to Ubicomp design. The intention of
this gradual engagement pattern is to characterise how we can facilitate
interactions between a person or multiple people and the devices
surrounding them by leveraging fine-grained proxemic measurements (e.g.,
distance, orientation, identity) between all entities. As a design pattern, it
helps unifying prior work in Proxemic Interactions, synthesizing essential,
generalizable interaction strategies, and providing a common vocabulary
for discussing design solutions.

We noticed that many of our early designs incorporated the idea of gradual
engagement, for example, the media player, where details of the videos
available are revealed as a person approaches the surface, and where
interaction techniques are tuned to allow finer interactions (using touch) when
the person enters the intimate zone. Furthermore, the Gradual Engagement
design pattern also informs and inspires other possible designs, and allows
for variations of the pattern applied to different domains. The remaining
examples illustrate this broad application of the pattern.

Gradual Engagement Pattern for Cross-Device Information Exchange. In
this first example, we applied the design pattern to mediate device-to-
device operations. In particular, we refined the gradual engagement pattern
to ease the information transfer task, where the refined pattern suggests
how devices can gradually engage the user by disclosing connectivity and
information exchange capabilities as a function of inter-device proximity.
That is, as people move and orient their personal device towards other
surrounding devices, the interface progressively moves through three
stages affording gradual engagement.

1. Awareness of device presence and connectivity is provided, so that a
person can understand what other devices are present and whether they
can connect with one’s own personal device. We leverage knowledge
about proxemic relationships between devices to determine when
devices connect and how they notify a person about their presence and
established connections.

2. Reveal of exchangeable content is provided, so that people know
what of their content can be accessed on other devices for information
transfer. At this stage, a fundamental technique is progressively revealing
a device’s available digital content as a function of proximity.

3. Interaction methods for transferring digital content between devices,
tuned to particular proxemic relationships and device capabilities, are
provided via various strategies.

36

Each method is tailored to fi t naturally within particular situations and
contexts. As one part of this pattern, Figure 4 demonstrates the proximity-
dependent progressive reveal of digital content stored on personal devices
when collaboratively interacting with a large shared interactive whiteboard.

Figure 4. Proximity-dependent progressive reveal of personal device data of
multiple users at different distances to the display: (a) minimal awareness of a

person sitting further away, (b) larger, visible content of a person moving closer,
and (c) large awareness icons of person standing in front of the display (Marquardt,

Ballendat et al., 2012).

Gradual Engagement with Proxemic-Aware Advertisements. A second
application of the design pattern was the Proxemic Peddler that explores
how future advertisement displays might try to grab and keep a passer-
by’s attention (Wang, Boring and Greenberg, 2012). A digital advertisement
board – in this case a book-selling display – reacts to the presence, distance,
identity, orientation, and movements of a nearby person. The key is to do so
in a non-aggressive and non-annoying manner that fi nds a balance between
the advertiser’s interest and the passer-by’s interest. When no-one appears
within its range, it rapidly animates a book list at the bottom, where its
motion is an attempt to attract the attention of a passer-by. The animation
slows as soon as it detects a passer-by looking towards it (which makes the
book list readable and far calmer), as illustrated in Figure 5, upper left. The
gradual engagement pattern is then applied, where additional personalised
details about preferred books are displayed as the person approaches
the display (Figure 5, upper right). If the person momentary looks away,
subtle cues are used to try to re-attract them, such as a slight shaking of
the product icon (Figure 5, lower left). If it looks as if the person is about to

37

leave, it tries to regain their interest by showing different products (Figure
5, lower right). In all cases, it gives up gracefully if it looks like the person is
really not interested.

Figure 5. Proxemic Peddler (Miaosen Wang).

Proxemic-based remote controls leverage Proxemic Interactions in order
to mediate the control of appliances in a person’s Ubicomp environment
(Ledo, Greenberg, Marquardt, Boring 2015). Using a mobile device (e.g.,
phone or tablet, Figure 6 left) as a personal control device, a person can
initially point around the room in order to scan which devices are available.
Items coming into view on the display are the ones generally in front of the
device. The person can then gradually increase the control of a particular
appliance simply by moving closer to it. More details about the appliance’s
current status and activity are shown on the screen, and the interface reveals
further control options to take action. For example, in Figure 6 (right) the
progressively revealed stages of a temperature control interface to a physical
thermostat are shown, from small icons on the left progressing to detailed
graph views of recent activity on the right. In summary, these proxemic-
aware controls are an alternate yet complementary way to interact with
appliances in people’s environments via a mobile device. Through spatial
interactions, people are able to discover and select interactive appliances
and then progressively view its status and controls as a function of physical
proximity. This allows for situated interaction that balances simple and
fl exible controls, while seamlessly transitioning between different control
interfaces.

38

Figure 6. (Left) Proxemic-aware remote controls: remote control interface on a
tablet computer; (Right) thermostat interface, showing a series of progressively
revealed interaction controls on the remote control’s screen (Ledo, Greenberg,

Marquardt, Boring 2015).

Summary
This chapter described the fi ve interleaved stages of a research pattern,
where its basic premise is to use social science theory to motivate design.
Using proxemics theory as a case study, we illustrated how we applied this
pattern to co-develop the design notion of Proxemic Interactions along
with a toolkit and a broad set of prototype systems.

We are sometimes asked if our work is driven by theory, or whether it is just
inspired by theory. The answer is perhaps a bit of both. With theory-driven
research, we rely on that theory to frame the behavior of our system-as-actor,
where the behavior should correspond (at least to a reasonable extent) to
that theory. Similarly, we rely on the theory and its nuances to explain and
predict how people will likely respond to our design ideas. However, we
do not blindly follow the theory, as we recognize that technology cannot
simply be substituted in place of one of the humans. We allow ourselves
to go beyond the theory. That is, we use the theory as a starting point
to help inspire designs, but are not concerned when our interaction ideas
stretch that theory or go beyond what the theory says. We are also open
to creating new ‘theories’ that incorporate technology as one of the actors.
For example, our design pattern of gradual engagement is a theoretical
variation of proxemics. As such, the gradual engagement pattern offers an
interaction technique that can be applied to many technology settings, and
that incorporates what we believe are good technological behaviors that
are easily understood and benefi cial to people.

Design creativity does not have to occur in a vacuum. This chapter offers
social science theory a contributor to both the initial design spark and for
shaping design alternatives over the course of the design process. Our book
“Proxemic Interactions: From Theory to Practice” (Marquardt & Greenberg,
2015) adds considerable detail to what is provided here.

39

Effects of Tabletop Embodiments on Coordination

Carl Gutwin, Andre Doucette, Regan Mandryk, Miguel Nacenta,
and David Pinelle

(Portions of this chapter previously appeared in the following published papers:
David Pinelle, Miguel Nacenta, Carl Gutwin, and Tadeusz Stach. 2008. The effects
of co-present embodiments on awareness and collaboration in tabletop groupware.
In Proceedings of Graphics Interface 2008 (GI ‘08). Canadian Information Processing
Society, Toronto, Ont., Canada, Canada, 1-8; Andre Doucette, Carl Gutwin, Regan
L. Mandryk, Miguel Nacenta, and Sunny Sharma. 2013. Sometimes when we touch:
how arm embodiments change reaching and collaboration on digital tables. In
Proceedings of the 2013 conference on Computer supported cooperative work
(CSCW ‘13). ACM, New York, NY, USA, 193-202.)

Introduction
Tabletop groupware systems allow co-present collaborators to work
together over a shared horizontal display. Tables are a natural site for group
work, both because of their ubiquity in the real world, and because their
physical characteristics support coordination and communication, such
as the face-to-face orientation of people around the table, the central
location of work artifacts, and the use of direct touch to manipulate objects
on the work surface. Direct touch – where people manipulate objects by
touching them with a pen or a fingertip – provides a number of benefits for
collaboration. In particular, the use of people’s real arms and hands provides
obvious awareness information about ‘who is working where’ on the table,
and makes it easy to watch other people work. However, direct touch also
has disadvantages: it can be difficult for people to reach objects that are far
away; arms and bodies can get in the way of each other, preventing people
from working in the same space at the same time; and it can be awkward
or uncomfortable to work close to another person. One way to deal with
these problems is to use relative rather than direct input techniques – that
is, techniques where each person manipulates a cursor rather than touching
objects directly. Relative input techniques allow reaching to any part of the
table and allow people to work in the same place, but since they do not use
people’s physical arms, this source of awareness information is lost.

The only awareness information produced by a relative input technique
comes from the virtual embodiment of the user (e.g., their cursor) on the

40

table. This visible representation provides each user with feedback about
their own actions, but as a side effect, also provides awareness to other
members of the group. Although this is the same mechanism by which real
arms convey awareness, virtual embodiments are much less obvious.

Figure 1. Left: large table. Right: artifacts and arm embodiments.

In this chapter, we examine the ways that different virtual embodiments
on tabletops affect collaboration. In particular, we look at the implicit
coordination that people carry out when they work on tasks in a shared
space. One hallmark of physical coordination on tables is that people almost
never touch one another, because social norms prevent them from getting
close enough for collisions or confl icts. In most situations, it is considered
impolite to cross over or under another person’s arm while reaching across a
table, and it is considered rude to touch or bump into them. This behaviour
on tables may stem from people’s natural touch avoidance (Anderson and
Leibowitz, 1978), which affects our spatial interactions with others, or it may
be an attempt to avoid disrupting another person’s activities (for example,
getting in their way or occluding their view of the workspace).

Whatever the reason, people’s unwillingness to carry out movements that
result in touch or collision is consistent and predictable. The phenomenon
is so reliable that groups use this mechanism to coordinate shared access
to tabletop space. For example, laying an arm around an area on the table
defi nes a personal territory and blocks others from taking ‘protected’ items.
Even though the arm presents a minimal barrier, it advertises that others will
have to commit an impolite act (crossing) to take items. Similarly, our natural
touch avoidance makes us aware of others’ movements. This provides a
coordination benefi t, in that selection and placement confl icts are rare;
instead, people negotiate turn-taking. People interacting over digital touch
tables can also gain these coordination advantages, because they use
physical arms and hands to manipulate objects. However, it is not clear
whether these benefi ts will continue when people use virtual embodiments.

To understand this question, we investigated crossing and touching
behaviour on physical and digital tables, using both physical and virtual
embodiments. First, we observed dyads carrying out tasks on physical
tables, fi nding that crossing and touches are extremely rare. Second,
we recreated the same task on a digital table, but implemented several

41

different arm embodiments. We considered two issues: whether digital
embodiments altered behaviour compared to physical arms, and how visual
factors of embodiment design (size, transparency, and realism) affected
user behaviour. In addition, we explored whether a dyad’s level of intimacy
affected their behavior.

Our studies provide five main findings:

• Crossings with physical arms are exceedingly rare, but are
common with all types of digital embodiments,

• The size of digital embodiments is the most important
factor of visual embodiment design; realism had little to no
effect,

• Subjective perceptions of awkwardness and invasion of
space differ between physical and digital embodiments,

• Relationship had a strong overall effect on the number of
crossings, but did not interact with the other factors,

• Perception of awareness differs for physical and digital
embodiments and is also affected by all visual factors.

This work shows the marked difference between behaviour with physical
and digital embodiments, suggesting that the sense of touch may be more
important in touch avoidance than the visual sight of touching; and we
discuss the design implications for supporting space management issues in
digital table environments.

Touch and Personal Space in Physical and Digital Environments
Touch is the most intimate interpersonal communication channel. It is “…
the most carefully monitored and guarded, the most vigorously proscribed
and infrequently used, and the most primitive, immediate and intense of all
communicative behaviours” (Thayer 1986, p.24). Touch has many functions:
it can demonstrate dominance (Major and Heslin ,1982), increase compliance
(Patterson et al., 1986), and even increase tips in a restaurant (Zweigenhaft,
1986). Body-accessibility research has shown that people’s comfort level
with being touched on different parts of their body depends on who is
doing the touching, where the touch occurs, and the type of touch (Jourard,
1966). Results showed that people are comfortable when others touch their
arms and hands, regardless of gender (Nguyen et al., 1973) or relationship
(Heslin et al., 1983); however, the social norms of table interactions dictate
that it is rude to reach over or under another’s arm to reach an item. This
may be due to people’s natural touch avoidance (Anderson and Liebowitz,
1978), or may be due to personal space norms (also called interpersonal
distance), which define comfortable minimum distances between people
(Hall, 1966). Personal space is moderated by many factors, including age,
relationship, culture, and gender (Hayduk, 1983). Although invasions of
personal space are generally avoided, research suggests that people can
mediate the uncomfortable feelings of an imposed invasion by changing

42

another behaviour (e.g., not making eye contact in a crowded elevator).

People use metaphors from the physical world when learning digital systems
(Carrol and Thomas, 1982), and previous researchers have shown that
personal space also exists in digital environments. For example, in immersive
virtual environments, people stand farther away from virtual humans that
engage them in mutual gaze (Bailenson et al., 2003), the same effect as with
fellow humans. People also assign personal space to avatars. For example,
people use gaze avoidance to compensate for personal space invasions
(Yee et al., 2007), and researchers found that people were uncomfortable
with invasions of their avatar’s personal space (Slater and Steed, 2002).
Users treat their avatar’s personal space as they would their own; invasions
(e.g., standing too close) are uncomfortable (Smith et al., 2000); and people
avoid actions that could cause others to be uncomfortable (e.g., walking
through another’s avatar) (Slater and Steed, 2002). Physical group spacing is
also similar for avatars, forming a circle and facing each other during speech
(Smith et al., 2000).

Observational Study on a Physical Table
To begin our investigation into tabletop reaching behaviour, we carried out
an observation-and-interview study of people working with paper artifacts
at a physical table. Ten dyads (1 female pair, 6 male pairs, 3 mixed pairs)
were recruited from the local university. Participants were instructed to build
a haiku (a three-line poem) by arranging words cut from a sheet of paper and
placed on the tabletop (Figure 2, left). The two participants built their haikus
at the same time, each on a different topic, and assembled the words on the
table in front of where they were sitting. Words were scattered around the
table and were available to either of the participants; however, the words
related to the left participant’s topic were on the right side of the table, and
vice versa. Participants had to reach to the other side of the table to retrieve
the most appropriate words for their haiku (e.g., see Figure 2, right), which
created the potential for many reaching confl icts in a short session.

Figure 2. Study setup (left), and word distribution (right).

We observed two clear behaviours in the study – touch avoidance, and
territoriality – both of which led to specifi c kinds of space management
strategies on the tabletop. First, it was very clear that people avoided
touching the other person’s arm or hand. Over ten sessions, with hundreds

43

of reaching events, we observed only three crossings (i.e., where one
person reached over or under the other person’s arm). This behaviour was
consistent across all groups, and was verified by watching video recordings
of the sessions. In interviews, participants repeatedly stated that it was rude
to reach over or under another person’s arm, and that they avoided doing
so. When we asked the three people who had been crossed how these
episodes felt, all three said that they noticed when it happened, and that
they felt uncomfortable – the other person was invading their personal
space.

Touch avoidance led to two mechanisms for managing table access:
implicit coordination, and accommodation. We observed nascent reaching
conflicts where both people simultaneously began reaching to the same
area; however, these never became selection conflicts (where both people
grabbed the same object) as groups used coordination techniques to avoid
selection conflicts. People also leaned back slightly when the other person
reached in front of them; this subtle behaviour was observed in all groups.
People reported that they moved away not because the closeness of the
other’s arm made them uncomfortable, but because doing so would let the
other person work without feeling uncomfortable about reaching into their
personal space. This accommodation technique provides a subtle and low-
effort means for giving permission to reach into personal space.

The second obvious behaviour that we observed was territoriality (Scott
et al., 2004). The main way that territoriality was exhibited in the study
was that people immediately adopted the area in front of them as their
personal territory. This organization is normal for tabletop work (Scott et al.,
2004), and was also encouraged by the setup of the study, because people
were told to build their haiku in the area in front of where they were sitting.
However, we also manipulated the sense of ownership in the public space
of the main table, by reversing the arrangement of topic words (described
above).

Digital Table Study
To investigate reaching behaviour in the digital world, we replicated the
haiku-building task used in our physical-table study on a digital tabletop.
We were interested in two main research questions: how physical and digital
embodiments differ in terms of reaching, and whether the visual design of a
digital embodiment affects reaching and collaboration. To study how users
behave with digital arm embodiments as compared to physical arms, we
compared four digital embodiment designs to reaching with a physical arm.
We varied three factors of digital embodiment design: size, transparency,
and realism. The larger an embodiment (size), the more likely others are
to notice it; however, it also occludes more of the workspace. The more
transparent an embodiment, the less prominent it is, and the less it might
affect a collaborator’s actions. Realistic-looking embodiments may cause
people to treat them more like digital extensions of a user.

44

Figure 3. The four arm embodiments.

Embodiment Conditions
When dyads arrived, we took a picture of each person’s right arm to be
used as their embodiment. The image was displayed between the cursor
location and the right side of their haiku paper for their embodiment (Figure
4). As users reached farther onto the table, the arm image was stretched. By
using an image of the participant’s arm, shape of the embodiment was kept
constant for all conditions. We tested one physical embodiment and four
digital embodiments that varied in the previously identifi ed visual factors of
embodiment design. People used a mouse to control the cursor location
when using digital embodiments.

• Thin: the embodiment image was scaled to 5 pixels wide, and fi lled
in with purple or green to differentiate users.

• Transparent: the unscaled embodiment image (approx. 200 pixels
wide; everyone’s arm is a different size and shape) was fi lled in with
purple or green and made semi-transparent (set at 60% opacity), so
users could see the words through the embodiments.

• Solid: the unscaled embodiment image (approx. 200 pixels wide;
everyone’s arm is a different size and shape) was fi lled in with purple or
green and was opaque.

• Picture: the unchanged image of the user’s arm (same size as the
transparent and solid conditions).

• Pens: the physical arm. In this condition, people moved words using
direct touch on the tabletop - a cursor appeared below the tip of a pen
and the embodiment in this case was their physical arm. Pen (cursor)
location was tracked using a Polhemus Liberty tracker, and selection
occurred via a button at the tip of the pen controlled by a Phidget
interface board. Pens were used instead of a touch table to track hand
locations at all times, not just during object selection.

45

Figure 4. Embodiment occlusion (left), and example of the system (right).

Results
To answer two main questions on collaboration over digital tables using arm
embodiments, we collected a variety of dependent measures, which are
grouped into the following three themes of understanding collaboration.

• Touch Avoidance – We used the number of crossing events (when
the two embodiments cross each other) as an objective measure of the
lack of touch avoidance. In addition, we asked participants to rate their
feelings of awkwardness when crossing embodiments.

• Territoriality – We calculated the number of word pick up and drop
events on either side of the table, as well as on their partner’s piece
of paper, as an objective measure of territorial behaviour. In addition,
we asked participants to rate how awkward it felt to reach to the other
side of the table, and their feelings of invasions of person space, with
each embodiment type. Lastly, we asked them to rate their level of
ownership of various interface elements.

• Awareness – We asked participants to rate their feelings of awareness
of their partner’s embodiment table location.

We present analysis for each theme by the factors of visual embodiment
design presented in the previous section. Our planned comparison for each
factor was: Physicality (Pens to Solid), Size (Thin to Solid), Transparency
(Transparent to Solid), and Realism (Picture to Solid). Effects of relationship
are included for each theme.

Touch Avoidance
There was a main effect of embodiment on the number of crossing events
(F(4,116)=30.02, p≈0.000, n2=0.53). The pairwise comparisons in Table
1 show that there were signifi cant effects of physicality and size on the
number of crossings, but not of transparency or realism. Figure 5 shows that
physicality was the dominant factor affecting touch avoidance as measured
by crossings. Although there was a main effect of relationship on the number
of crosses (F(2,27)=4.45 p=0.021, n2=0.25), there was no interaction
with embodiment (F(8,108)=1.27, p>0.05, n2=0.09). As Figure 5 shows,
Strangers crossed fewer times than Romantics (p=0.016), Acquaintances

46

did not signifi cantly differ from Strangers or Romantics (p>0.05).

Figure 5. Mean number of crosses by embodiment (left),

and by relationship (right).

We asked participants to rate their agreement with the statement: “It felt
awkward to cross embodiments with this embodiment”; results are shown
in Figure 6. A Friedman test showed a main effect of embodiment on
participants’ feelings of awkwardness crossing embodiments (n2=58.69,
p≈0.000). As Table 1 shows, there were signifi cant effects of physicality,
size, and transparency, but not realism. A Kruskal-Wallis test showed no
main effect of relationship on any ratings of awkwardness of crossing
embodiments (all n2<3.53, p>0.17).

Figure 6. Feelings of awkwardness of crossing embodiments.

Territoriality
We also collected data on the territorial behaviour of participants. Previous
work in territoriality (e.g., Scott et all., 2004) showed that people’s reaching
behaviour was mediated by the location of items on the table. There was no
main effect of embodiment on the number of words picked up and dropped
on either side of the table. On average, people picked up 15.5 words from
the ‘other’ side of the table, and 12.0 words from ‘their’ side of the table
(recall that the other side of the table contained more relevant words).
We interpret this to mean that people grabbed the words they wanted,
regardless of location. We also asked participants to rate their agreement
with the statements, “I felt like my partner was invading my space” and “I
felt like I was invading my partner’s space” (see Figure 7). Friedman tests
showed a main effect of embodiment on participants’ feelings of being
invaded by their partner (n2=52.66, p≈0.000) and of invading their partner’s
space (n2=63.69, p≈0.000). As Table 1 shows, participants felt less awkward
invading and being invaded with increased transparency and decreased
size. Participants felt more awkward being invaded with a physical
embodiment (Pens), but there was no effect of physicality on the feeling

47

of invading space. Realism did not affect the awkwardness of invading or
being invaded. A Kruskal-Wallis test showed no effect of relationship on
feelings of being invaded with all embodiments (all n2<0.695, p>0.17)
except Picture (n2=8.00, p=0.018). Acquaintances were different than
Strangers and Romantics (both p<0.02). A Kruskal-Wallis test showed no
main effect of relationship on the ratings of invading partner’s space (all
n2<2.35, p>0.309).

Figure 7. Feelings of being invaded, and of invading partner.

Participants had complete freedom constructing their haikus and we did
not specially instruct them on whether they were allowed to reach onto
another user’s paper. Only 15 of the 30 groups ever accessed words on
their partner’s paper (3 Strangers, 6 Acquaintances, 6 Romantic couples),
and there were large variations in the amount of this activity in the dyads
Strangers invaded their partner’s paper sparingly (1-2 times), Acquaintances
did so more often (1-11 times), and Romantic couples invaded most of all
(3-96 times). Half of the groups did not invade their partner’s paper; they
stated they did not realize that they would be able to do so.

Table 1. Pairwise comparisons showing the effect of each factor as compared to
Solid (e.g., Pens had fewer crosses than Solid).

We also asked people to report their level of ownership over table items
on a 5-point scale (1=”no ownership”, 5=”complete ownership”). Although
people felt more ownership over their paper (mean=4.07) and the words
on their paper (3.75) than over their partner’s paper (1.97) or words on their
partner’s paper (2.05), people did not differentiate ownership of words on

48

the opposite side of the table (2.71) from words on their side of the table
(2.9). There were no main effects of embodiment on these ratings.

In addition to finding out how participants behaved with and felt about
visual embodiments, we asked two free-text questions about crossing
embodiments. We grouped participant responses into categories based on
the words used (one response can appear in multiple categories). When
responding to the question, “briefly describe why you avoid crossing over
(or under) someone’s physical arm”, people reported because it is rude,
impolite, uncomfortable, or awkward (33), it is an invasion of personal space
(19), and it causes a performance – occlusion, interruption, and distraction –
cost to my partner (19). When responding to the question, “briefly describe
how crossing over (or under) someone’s physical arm is different than
crossing over (or under) someone’s digital embodiment”, people reported
embodiments can’t “feel” (26), the embodiment is not “me” or “them”
(18), and the embodiments don’t have or invade personal space (14).

In addition to clear evidence of touch avoidance (as described above), we
also observed instances of implicit coordination and accommodation (e.g.,
see Figure 4). One coordination policy we observed with the pens was
that some people ‘planned out’ the words they wanted, and then quickly
reached out and grabbed the words, making a pile on their paper, and
then organizing into sentences. We also observed instances of apologies
while reaching with the pens, often when someone reached in front of the
other person, or during a turn-taking coordination episode (i.e., the hallway
passing effect). This is in contrast to the apologies we observed for the
digital embodiments, which were much fewer (e.g., “I can’t see, move your
arm - oh sorry” or “you stole my word - oh sorry”).

When first using a new digital embodiment, people would often poke at
each other’s embodiment. Two groups referred to this as ‘sword fighting’.
We also observed people poking at the other’s embodiment when they
were done building their haiku. In that case, it seemed to be done explicitly
to annoy the other person, even though the other person cannot feel it and
may not even notice it happening. While searching for words, many people
reached out with their embodiments and moved it across the screen as a
guide (similar to how a mouse cursor is used to scan a document or website).
This happened with all digital embodiments, though was less common with
occluding embodiments (Solid and Picture). Users never scanned in the
same manner with the physical embodiment.

Another observed behaviour unique to digital embodiments was that people
left their embodiment stretched out when they were done interacting with
their haiku. This is akin to throwing down your scissors into the center of
the table when you are done with them. Most people realized after a few
minutes that their embodiments were ‘in the way’, and moved them. People
never threw down their Pens.

49

Discussion
The user study shows five main results:

• Physical arm crossings are exceedingly rare (fewer than two
per session, on average), but are common with all types of
digital embodiments (twenty or more);

• The size of digital embodiments is the most important factor
of visual embodiment design; realism had little to no effect;

• Subjective perceptions of awkwardness and invasion of
space differ between physical and digital embodiments;

• Relationship had a strong overall effect on the number of
crossings, but did not interact with the other factors;

• Perception of awareness differs for physical and digital
embodiments and is also affected by all visual factors.

Differences Between Physical and Digital Embodiments
People rarely crossed physical arms, but had little issue crossing digital
embodiments (even when they looked like their own physical arms). The
main reasons for this dramatic difference lie in the way people felt about the
arms’ connection to the real bodies, and the lack of any touch sensation.
First, most participants reported that they did not associate the digital
embodiments with their own, or their partner’s, actual body: several people
said that the embodiments were “not me” and “not my partner;” others
stated that the digital embodiments did not have personal space. We saw
further evidence in the lack of proprioception with the digital embodiments
– people often left their digital arms ‘laying out on the table,’ something
that would likely never happen with real arms. Second, participants stated
that the digital embodiments cannot “physically touch” or have no sense of
feeling, and so the awkwardness of crossing was removed.

These statements clearly imply that people perceive physical touch differently
than a visual representation of touch, even if that visual representation is
dynamic and realistic. The touch avoidance first seen in the physical-table
study appears to be dependent on a true sensation of touch rather than a
representation. Although this appears to be a simple finding, it is in part
dependent on the fact that representations of arm crossing are not subject
to social norms; it is possible, however, that other representations of touch
(e.g., ‘holding hands’ touches) might not be seen as being as neutral as
crossing. Nevertheless, in our tabletop systems, the lack of true touch
in digital arm embodiments appears to remove most touch-avoidance
behavior. This has strong design implications, because people may perform
actions in the digital world that they would strongly avoid in the physical
world (e.g., crossing over an outstretched arm to steal an item).

Territoriality
People did not extend their private territories in front of them beyond their

50

pieces of paper. This may be because we swapped the word locations, which
forced people to reach into what otherwise might be the other person’s
territory. We also did not allow people to create their own territories in
the public workspace. The system automatically moved words back to their
original location when they were dropped anywhere outside of pieces of
paper. Our territoriality results also suggest there is an effect of relationship
on territorial behaviour (which has not been reported before). The more
intimate the relationship, the more likely people are to invade personal
territories. In addition, although people’s public workspace territorial
behaviour was different than reported in other research, people’s subjective
responses matched previous work (e.g., people are uncomfortable reaching
to the other side of the table (Hornecker et al., 2008)).

Occlusion and Digital Embodiment Size
Although not nearly so strong as the effect of physicality, we also saw an
effect of embodiment size on crossings and awareness. Figure 6 and Table 1
show the same trend: the larger an embodiment is, the more aware people
feel of their partner, and the less they cross. In addition, increased size
was also paired with more feelings of awkwardness reaching to the other
side of the table. These effects are likely due to both the increased visual
prominence of the larger embodiments, and the increased likelihood that
the arm will occlude artifacts on the table and disrupt the partner’s activities.
Many of the free-text responses stated that people were concerned about
disrupting their partner’s work, both with physical and digital embodiments.
We speculate the cause of the differences in behaviour and subjective
results between the digital embodiments was directly related to the level
of occlusion caused by that embodiment. The lack of effect for Realism
(Picture vs. Solid) provides additional evidence for this hypothesis, because
both Picture and Solid occluded the workspace to the same degree.

Implications for Design
There are five issues from this research that designers should consider when
developing tabletop systems.

• Touch input (real arms) vs. indirect (digital embodiments). When designing
tabletop systems, designers must choose the way that people will interact
with the table. In some cases, indirect touch (and digital embodiments) has
been proposed as a way to simplify reaching on large tables. Our study
shows that this decision can greatly impact the way that people use the
system; as a result, designers should think carefully about the ramifications
of different choices. For example, designers might use only real-arm touch
input when selection conflicts could lead to severe errors; with real touch,
people will be more aware of their partner and less likely to come into
conflict over the table.

• Visual realism does not reproduce social protocols. The study showed that
no purely visual design reproduced the degree of touch avoidance seen with
physical arms. This means that designers will not be able to re-introduce

51

social control mechanisms simply through appearance (although several
participants found the picture arms ‘creepy’, this did not produce additional
touch-avoidance). As a result, systems that use digital embodiments may
need to build in explicit access control to prevent uncontrolled access.

• Lack of awkwardness could be useful. In some situations, such as fast-
paced tasks or games, people may be able to complete their work faster
when they do not have to worry about making others uncomfortable. In these
cases, designers could choose digital embodiments to allow for comfortable
crossings, and narrow embodiments to avoid occlusion. However, this
decision also means that actions will be less obvious, decreasing awareness.

• Relationships change behaviour. Reaching and territoriality behaviour
is strongly dependent on the relationship of the users. This is important
for public installations (e.g., museums), where the system may be used by
anyone. Designers who know the relationship of their users can choose
embodiments that fit the relationship type – for example, if users are more
familiar with one another, access control mechanisms might be required.

• Occlusion is an important factor in embodiment design. Of the visual
factors we investigated, size was the only one that had an effect on behaviour.
In general, people did not want to disrupt others (this was true even for
intimate couples). Transparency is easy to build into arm embodiments, and
provides a good combination of visual salience (for awareness), but without
occlusion.

Directions for Future Research
Touch avoidance provides people with a natural way of avoiding conflict, but
without true touch, alternate means of managing access to the table will be
needed. First, access could be controlled at the system level through roles
or permissions. Previous CSCW work on explicit roles and access provides
the control required and provides solutions to conflicts, but these methods
are often too heavyweight to be used in practice. We plan to explore new
possibilities for light-weight access controls for tabletops (e.g., touching an
object to reserve it for a short time).

Second, new social protocols may appear as people become more
experienced with digital embodiments. The changes that we saw may
have occurred because people have so little exposure to these techniques.
With more experience, groups may develop new coordination methods –
for example, they may start to associate digital touching with the negative
implications of physical touching, or may develop other mechanisms that do
not depend on touch avoidance (e.g., more explicit turn-taking behaviours).

Third, systems could increase the costs of crossing, to try and create
embodiments that behave more like physical arms. In the physical world,
it takes longer to reach over or around another’s physical arm, so we could
introduce a performance cost to crossing behaviour (e.g., increasing the C/D
ratio during a crossing event). Similarly, because touch avoidance is based

52

on tactile sensations, it may be possible to reintroduce these sensations
(e.g., by vibrating the mouse) when crossings occur. These added costs
could cause people to behave with arm embodiments as they do with
physical arms, recreating the real-world protocols.

Our results suggest it will be important to know more about systems that
allow multiple types of input and embodiment. For example, systems
that combine direct and indirect input will have the two embodiments
mixed together. We speculate people would have little issue crossing an
arm embodiment over a physical arm, but more study is needed. Remote
collaboration over distributed tables is another mixed setting: both
people interact with direct touch, but are represented remotely via an arm
embodiment (Tang et al., 2006).

Our work looked at the change from a physical form to a representational
form, and how this changes behaviour. We chose arm embodiments as our
representation and touch avoidance as the behaviour. Although we lose
touch avoidance with this representation, feelings of awkwardness and
invasion are still present, so other protocols may also remain. For example,
touching certain parts of another’s avatar with your avatar’s arm may still be
considered rude, even though neither person can “feel” that touch.

Conclusions
In this paper, we presented two studies of tabletop reaching behaviour: a
physical table study, demonstrating that people rarely cross arms, and a
digital table study, demonstrating the marked difference between reaching
with physical and different digital arm embodiments. We showed that the
most important factor in the visual design of embodiments is the level of
occlusion caused by the embodiment: the lower the occlusion, the less
people are aware of each other’s actions, the less awkward it is to interact
in shared spaces, and the more people cross embodiments. This research
is an important step in understanding the differences between physical and
digital group interactions, opening up many new questions on what factors
tabletop designers should manipulate to ensure that groups are able to
work as naturally as they do over physical tables.

53

Cross-Device Content Transfer in Table-Centric Multi-
Surface Environments

Stacey D. Scott, Guillaume Besacier, Phillip McClelland, Julie
Tournet, Nippun Goyal, and Frank Cento

Introduction
There has been increasing interest in the surface computing community
to use small, personal surfaces, such as tablets or smartphones, in
conjunction with large surfaces, such as interactive walls and digital
tabletops. Combining personal and large surfaces into a functional multi-
surface environment (MSE) introduces new design challenges. For example,
effective mechanisms are needed for transferring content across different
surfaces to allow the most flexible use of the available personal and large
surfaces. Significant cross-device transfer research exists in the Human-
Computer Interaction (HCI) and Computer-Supported Cooperative Work
(CSCW) fields, particularly in the area of multi-device environments (MDEs)
(Rekimoto and Saitoh, 1999; Nacenta et al., 2005; Nacenta et al., 2009;
Wallace et al., 2009; Wallace, 2011). This research has yielded many useful
cross-device transfer techniques (see Nacenta et al. (2009) for a review). Yet,
most of these techniques rely on mouse-based, or otherwise device-aided,
input capability that is unavailable in touch-based MSEs. For example, a
popular cross-device transfer technique is Rekimoto’s (1997) PICK-AND-
DROP (P&D) technique, which relies on a digital pen to transfer content
from one display to another.

To address this limitation, we conducted a series of three studies to
systematically investigate how existing cross-device transfer techniques
could be applied or adapted for use in touch-based MSEs. These studies
focused on cross-device transfer in a tabletop-centric MSE (T-MSE) context,
where a small group of people, each with an individual multitouch tablet,
were engaged in a joint activity around a multitouch digital tabletop. The
first study examined how two popular cross-device transfer techniques
(a “virtual portals” technique (explained below) and the aforementioned
P&D technique) could be applied (or adapted) to a “current” T-MSE set-
up. In this T-MSE, the digital tabletop was unable to distinguish between
different users interacting with the tabletop—a limitation of most current
multitouch digital tabletops. It therefore posed unique challenges for

54

cross-device transfer during multi-user interactions. The second and third
studies continued the investigation of the P&D technique, further evolving
its design adaptation in each subsequent study to better optimize its use
for T-MSEs and the specific application task context. The latter two studies
focused on a “future” T-MSE set-up that was able to differentiate between
users interacting with the tabletop. This capability built on new above-the-
surface sensing methods from SurfNet (Genest et al., 2013) and the broader
surface computing research community (Hilliges et al., 2009; Pyryeskin et
al., 2012; Haubner et al., 2013).

In the remainder of the chapter, we provide an overview of existing cross-
device transfer mechanisms, and discuss their limitations for touch-based
MSEs. Next, we overview the DOMINION game as the application context
for the three studies. We then overview our study methodology, which
remained relatively fixed across the three studies. Next, we report each
study. Full, detailed versions of Studies 1 and 2 have previously appeared
in HCI literature (Scott et al., 2014a; Scott et al., 2014b); thus, only select
findings are included in their respective study sections. Study 3 is a
previously unpublished follow-up study that investigated design limitations
of the P&D adaptation explored in Study 2. Finally, we reflect on insights
learned from these investigations and their implications for cross-device
transfer in T-MSEs.

Cross-Device Transfer in Multi-Surface Environments
(Components of the background presented here were also reported, in full or in
part, in earlier publications on Study 1 (Scott et al. 2014a), Study 2 (Scott et al. 2014b).)

Cross-device transfer is an active area of research in MSEs, and the broader
area of multi-device environments. Also, to address reach and ergonomic
issues related to dragging digital objects over a large distance, single-
surface object transfer techniques have been developed that minimize the
need for long drag-and-drop actions. This section overviews these single-
surface transfer mechanisms first, followed by the mechanisms used to
move content across multiple devices. As all three studies explored the
Pick-and-Drop (P&D) technique, this mechanism, and its applicability to
touch-based T-MSEs, is discussed in detail.

Object Transfer across Large Surfaces (Within-Device Transfer). Using
direct-touch interaction to drag digital content across a large surface has
several known ergonomic issues, including fingertip discomfort due to
friction and arm and finger fatigue. Moreover, some locations are difficult
to reach. Therefore, drag-and-drop extensions have been developed for
moving content across large surfaces, including techniques that move
an object onto a distant object (e.g. a folder) or location (Baudisch et al.,
2003; Hascoët, 2003; Collomb et al., 2005; Collomb and Hascoët, 2008;
Doeweling and Glaubitt, 2010). Techniques have also been developed that
leverage the physicality of direct-touch surfaces, such as tossing or flicking
interaction gestures that use pseudo-physics to “propel” objects to distant

55

locations (Scott et al., 2005; Weber et al., 2008; Wilson et al., 2008). The
aforementioned P&D technique has also been used to transfer objects from
one location to another on pen-based interactive wall and tabletop surfaces
(Haller et al., 2010). Further, P&D has been shown to be more efficient
than drag-and-drop in these contexts (Rekimoto, 1998). Another approach
is to move objects from one surface location to another by using “virtual
portals,” where an object placed on a portal (typically a virtual interface
container or widget) in one location then appears on an associated portal
in another location (Besacier et al., 2007; Voelker et al., 2011). The above
single surface transfer techniques, especially those designed for direct-
touch environments, provide useful inspiration for touch-based cross-device
transfer.

Object Transfer across Multiple Devices (Cross-Device Transfer). Existing
cross-device transfer techniques broadly fall into three main categories:
moving content across contiguous virtual workspaces; moving content via a
virtual portal; and moving content via a physical proxy.

Contiguous virtual workspace techniques are based on the physical
configuration of displays in the environment. In this approach, displays are
connected to a common software architecture that maintains awareness of
the physical configuration of the displays (static or dynamic configurations
are possible). The display configuration information is then used to provide
a contiguous virtual workspace across devices. Thus, moving an object
off the edge of one display moves it to the nearest edge of the adjacent
display (Rekimoto and Saitoh, 1999; Streitz et al., 2001; Johanson et al.,
2002; Hinckley et al., 2004). For example, in PointRight (Johanson et al.,
2002), several large screen displays and an interactive tabletop share a
single mouse pointer. A static adjacency map, based on the room topology,
determines where the pointer moves when it leaves the edge of a screen. In
Stitching (Hinckley et al., 2004), an ad-hoc adjacency map is created, with
the system inferring the user’s intention to join two adjacent displays when
a “stitch” gesture is drawn, starting on one display and ending on a second
display. This map can then be used to move digital artefacts between
connected tablet computers. Marquardt et al. (2012) propose a similar
tablet-to-tablet transfer capability between adjacent tablets, but instead of
using a connection gesture they establish the initial ad-hoc connection by
tilting one tablet towards the other.

A disadvantage of the contiguous virtual workspace approach for
transferring digital objects between a tabletop and a personal surface is
the asymmetric size of the displays. The large edges of the tabletop do not
map well to the small edges of a tablet or smartphone. The virtual portals
technique mentioned above can be used to resolve this issue by providing
a dedicated portal area on each device for transferring content (Hinckley
et al., 2004; Bachl et al., 2011; Fei et al., 2013). We examined a virtual
portals method called BRIDGES in Study 1. The previous two cross-device
transfer approaches require people to drag the transferred object to and

56

from the virtual portal (or display edge) from its origin and to its destination.
This can introduce the aforementioned ergonomic issue related to long-
distance touch-based dragging. Physical proxy techniques address this
intermediary interaction step issue by using a physical object to manage
the transfer. They allow for collection and placement of the transferred
object directly from its origin to its destination on the respective displays by
taking advantage of the three-dimensional space around the displays. This
approach involves binding a digital object to a physical object and then
moving the physical object to the target display. This typically requires a
system-recognized object to facilitate the binding/unbinding process, such
as a digital pen (Rekimoto, 1997; Baudisch et al., 2003; Haller et al., 2010;
Scott et al., 2014a) or “puck” (Kobayashi et al., 2008). For example, P&D
(Rekimoto, 1997) allows someone to “pick up” a digital object at its original
location using a digital pen and “drop” it directly at the destination location
using the digital pen. This technique evokes the commonly used drag-and-
drop concept, and bears strong similarity to the familiar action of lifting and
relocating a physical object.

Given the more direct origin-to-destination interaction process, physical
proxy techniques like P&D are highly desirable in T-MSEs. They reduce
intermediary drag actions across a large tabletop surface, and so, provide
more efficient interaction and avoid the ergonomic issue of long distance
dragging. Thus, we were highly interested in using P&D in our T-MSE
applications. However, the touch-based interaction and the multi-user
nature of T-MSEs introduced difficulties for applying P&D in this context; we
discuss these issues further below.

Applying PICK-AND-DROP to Touch-based, Multi-User T-MSEs. In touch-
based surfaces, no digital pen (or other readily available physical object) is
available to serve as the proxy for P&D transfer. In our research, we address
this by using the user’s hand as the physical proxy between the tabletop
and a personal tablet. This allows someone to “pick-up” the object using a
menu or gesture on the tabletop, move their hand to their tablet and then
“drop” the object by touching the tablet (and vice-versa). However, in a
collaborative T-MSE, multiple people may wish to simultaneously transfer
content between various devices. In this situation, the system needs to
associate the correct picks with the correct drops, which is only possible if
the system knows who is doing what in the environment.

Because people often bring and, exclusively use, their own personal
devices in a group setting, a reasonable design strategy in a T-MSE context
is to associate a specific user with a specific personal surface (e.g., a tablet,
smartphone), and to assume that all interactions with that device are made
by that person (i.e., the device “owner”). Using this strategy, we can then
assume that all picks or drops on a given personal device are performed by
the device owner. Knowing who is doing what on the shared tabletop is more
challenging. Indeed, most existing tabletop systems cannot distinguish
between different users. Thus, automatically associating picks or drops with

57

a given person is more diffi cult, and requires some design adaptation of the
P&D technique or additional user-identifi cation system capabilities.

In Study 1, we addressed this issue by providing dedicated “personal
territories” along the tabletop edge in front of each group member. Any
picks or drops conducted in these territories were associated with the
“owning” user, enabling simultaneous, multi-user P&D transfers. In Studies
2 and 3, we addressed this issue by augmenting our tabletop with user-
identifi cation capabilities, as detailed in the Study Methodology section
below.

Research Approach
Figure 1 summarizes the overall research approach used across the three
studies, including the study research questions, the cross-device transfer
techniques included in the studies, and the T-MSE environments used in
the studies. The fi gure shows the progression from Study 1’s comparison
of two existing cross-device transfer approaches (Bridges virtual portals vs.
P&D physical proxy) to Study 2 and 3’s investigation of successive design
refi nements of a single cross-device transfer approach (P&D) to improve its
usability in T-MSEs. Each successive study focused on addressing interaction
issues revealed by the previous study. The following section details the
specifi c study methodology that was used in the studies.

Figure 1. Overview of studies conducted to investigate cross-device transfer in T-MSEs.

Study Methodology
(Components of the methodology presented here were also reported, in full or in part,
in the earlier publications on Study 1 (Scott et al. 2014a) and Study 2 (Scott et al. 2014b).

All studies utilized a mixed-methods research methodology that involved
quantitative and qualitative study measures. All studies were conducted in
the same controlled human-computer interaction laboratory environment at
the University of Waterloo.

Participants. In all studies, participants were recruited both from the
University of Waterloo student and staff population and from local board
game stores’ clientele through email lists, social media sites, and posters.
To promote natural group behaviour, participants were required to sign-

58

up with one or two friends, depending on the study, and to have previous
experience with the commercial version of the DOMINION game. Table 1
summarizes the participant details for each study.

Table 1. Participant details for each study.

Experimental Design. Studies 1 and 2 each included only one independent
variable in a single factor (Study 1: transfer technique, Study 2: visual
feedback) within-subjects study design, with three levels for each factor in
each study. Study 3 included two independent variables in a two-factor, 2
(tablet feedback) x 2 (tabletop feedback), mixed methods design where the
tablet feedback was a within-subjects factor and tabletop feedback was a
between-subjects factor. This more complex study design is further detailed
in the main Study 3 section. Table 2 summarizes the study conditions utilized
for each study.

Table 2. Summary of the main experimental design details used in each study,
separated by the respective within- and between-subjects factors.

Experimental Task. The DOMINION Game. DOMINION is a 2-4 player
medieval themed card game, in which each player builds their own personal
deck to utilize during game play by “buying” cards from a bank of shared
card decks. Game play in DOMINION typically occurs on a turn-by-turn
basis, though players can take some actions during other players’ turns. In
a typical turn, a player draws a minimum of fi ve cards from their deck, and
then makes several card-based actions (e.g. revealing (i.e. “playing”) one
or more cards to “buy” resources, “attacking” other players (i.e., forcing
them to discard cards), or discarding unused cards). Players monitor their
opponent’s game actions and may alter their game strategy in response to
an opponent’s actions.

To facilitate investigation of cross-device transfer in this game, a custom
digital tabletop software application of the DOMINION game was developed
that incorporated the use of multiple, portable tablets to provide each
player a private digital space (Figure 2). In this digital DOMINION game,
cards can be freely moved and rotated using direct touch manipulation.

59

When two cards are moved to the same position, they are automatically
stacked into a deck of cards. A card may be drawn from a deck of cards by
touching and dragging the top card, while the whole deck can be moved
by dragging its border. by dragging its border.

Figure 2. DOMINION digital tabletop system. The Personal Play Area denotes
the personal territories used in the BRIDGES condition in Study 1. These colour-

delimited areas were omitted in the PICK-AND-DROP conditions in all three
studies (from Scott et al. 2014a).

Cards and decks can be fl ipped via a contextual pie menu invoked by
tapping on a card or deck. Decks can also be shuffl ed with this menu. In
both cases, a short animation confi rms the action. In the study conditions
reported in this chapter that involve PICK-AND-DROP (P&D) transfer, card
“picks” were also performed via this menu.

Equipment and Setting. Studies 1 and 2 utilized a custom-built infrared laser
light plane (LLP) multitouch digital tabletop with a surface size of 90x130 cm
and projected display of 1280x800 pixel resolution (see Figure 2). Study
3 utilized an upgraded custom-built multitouch tabletop incorporating a
4K (3840x2160 pixel) resolution 55-inch fl at-panel LED display fi tted with
a PQLabs infrared multitouch frame. In Study 1, participant pairs sat at
adjacent sides of the tabletop. In Study 2, the 3-person participant groups
sat at three adjacent sides of the tabletop, with the middle player seated
at the long side of the rectangular table. In Study 3, participant pairs sat
facing each other at the long sides of the tabletop. This change in seating
arrangement from Study 1 was made due to the wide screen confi guration
of the upgraded table and, consequently, the larger disparity in the length
between the long and short sides.

In all studies, participants were each provided a 7-inch Galaxy Tab tablet
computer. Tablets were preconfi gured to be associated with the player’s
position at the table to facilitate the cross-device transfer methods under
study. Separate laptops were set-up on nearby desks for administration of
the study questionnaires. Study questionnaires were administered through
the SurveyMonkey® (http://www.surveymonkey.com) online data collection
service. In all studies, the DOMINION tabletop software application used
TUIO multitouch events. In Studies 1 and 2, an infrared camera under the
table and the open-source toolkit Community Core Vision (CCV) (http://

60

ccv.nuigroup.com/) were used to process touch. In Study 3, the PQLabs
input frame natively produced TUIO data. Finally, in Studies 2 and 3, user
identification of tabletop touches and above-the-table arm movements
were obtained using a Microsoft Kinect mounted 1.5m above the digital
table and an adapted version of the KinectArm toolkit (Genest et al., 2013),
as described in Scott et al., 2014b.

Procedure. Participants performed the main study activities together in a
group of 2 (Studies 1 and 3) or 3 (Study 2), but completed written forms
and questionnaires individually. Upon arriving, participants first completed
informed consent forms and a background questionnaire that gathered
demographic information and their prior game play experience. They
were then given a short demonstration of the experimental hardware
systems. Each participant group played three games in a row, one for each
study condition. The order of presentation of the three conditions was
counterbalanced. In addition, three different sets of ten previously selected
Dominion cards were used for the banks of purchasable cards, always
presented in the same order to avoid interfering with the counterbalancing
of the conditions. Learning effects related to card sets were not anticipated,
as all players had previous experience with DOMINION.

Before the first condition, players were given a brief demonstration
of the system. In Study 1, each cross-device transfer method was also
demonstrated before each condition. In Studies 2 and 3, the P&D technique
was only demonstrated at the beginning of the study. Most groups also
took 4-5 minutes at the start of each game to read aloud the description
of each available card in the bank for the session. After each condition,
players completed a post-trial questionnaire about that condition. After
the final game and post-trial questionnaire were completed, participants
either completed a post-experiment questionnaire (Studies 1 and 2) and/
or interview with the researchers (Studies 2 and 3). Finally, participants were
thanked and paid for their participation. All three studies were approved by
the university’s institutional ethics review process.

Data Collection and Analysis. In all studies, quantitative and qualitative
data were collected and analyzed. Participant interactions with the
tabletop and tablets were captured in computer log files. Video data (with
audio) and observer notes captured participants’ verbal and non-verbal
behaviour during the sessions. Background, post-trial, and post-experiment
questionnaires included closed- and open-ended questions. All post-trial
feedback questions utilized a 7-point Likert-style rating scale to capture
participant perceptions and experiences in each condition.

Different qualitative analysis approaches were used across the three
studies, characterizing the diminishing exploratory nature, and increasingly
hypothesis driven goals of each successive study. In Study 1, the video data
and open-ended participant responses underwent an extensive qualitative
analysis, including open coding to reveal interaction and communication

61

patterns, as well as incidents of confusion or frustration and development
of flow diagrams to represent emergent interaction strategies (Beyer and
Holtzblatt, 1998), to better understand the advantages and disadvantages
of each studied cross-device transfer technique (BRIDGES and TA-P&D).
Details of full analysis is reported in McClelland (2013); only relevant
themes and insights are reported in this chapter. In Studies 2 and 3, the
video and open-ended participant responses were reviewed for patterns
and emergent themes to provide context and deeper understanding of the
quantitative results.

The Likert scale data from the post-trial questionnaires were analyzed using
Repeated-Measures Analysis of Variance (RM-ANOVA). To account for the
non-independence of group member responses, group was used as a
dependent factor by using seating position at the table as the additional
repeated measures factor. Thus a 3 (Condition) x 3(or2) (Seating Position)
RM-ANOVA was conducted. As seating position was not expected (and
was not found) to significantly impact the study measures of interest (e.g.
awareness of cards being transferred, awareness of cards being transferred
by a partner), we only report the main effects related to Condition in
this chapter. An alpha-value of α=.05 was used to determine statistical
significance.

Study 1
The goal of Study 1 was to explore the potential of existing cross-device
transfer approaches for supporting transfer in a T-MSE. Of the three main
approaches discussed above, the contiguous virtual workspace approach
was ruled out due to the previously mentioned display size disparity issue
in T-MSE settings that can introduce confusion about where objects should
be placed or will appear during transfer on the different sized devices. As
mentioned, the virtual portals approach resolves this issue by bounding
interaction to visible containers in the interface that indicate where object
transfer can occur. As the physical proxy approach uses point-to-point
transfer, rather than moving objects via the display boarders, the display
size disparity does not impact its use. Thus, we chose to include a virtual
portals technique and a physical proxy technique in the study.

BRIDGES Interaction Design. For the virtual portals technique, we
implemented a version called BRIDGES, in which a visible container
widget was provided along the tabletop edge in front of each user (called
the TABLETOP BRIDGE), and along the top edge of each personal tablet
(called the TABLET BRIDGE). For the purpose of the study, the location of
the BRIDGES were fixed, and the virtual connection between each user’s
TABLETOP BRIDGE and their TABLET BRIDGE was established during
study set-up and fixed throughout the study. This restriction was deemed
appropriate due to the nature of the experimental task—a “sit down” card
game. In use cases where users are expected to move around the tabletop,
the T-MSE could be augmented with proximity or user-tracking sensors
to flexibly allow users’ TABLETOP BRIDGES to follow them around the

62

environment, similar to the proximity-based virtual portals technique used
by Fei et al. (2013).

In the context of the Dominion game, when a card was transferred to either
the TABLET or TABLETOP BRIDGE the top half of the card would appear
on the TABLETOP BRIDGE and the bottom half of the card would appear
on the TABLET BRIDGE. Once on the BRIDGE, the card can be moved onto
the target device by dragging it off the corresponding BRIDGE, moved
back to the originating device by dragging it off the originating BRIDGE, or
simply left on the BRIDGES.

Territory-Adapted-Pick-and-Drop (TA-P&D) Interaction Design. For the
physical proxy method, we adapted the P&D method to the “current“ T-MSE
constraints discussed above in a version called TERRITORY-ADAPTED-P&D
(TA-P&D). In TA-P&D, the T-MSE was divided into different spatial territories.
A personal territory was provided along the tabletop edge in front of each
user, a shared territory covered the rest of the tabletop workspace, and
a private territory was provided on each person’s personal surface. Each
user’s personal territory was virtually connected to their personal tablet
(private territory), and this connection remained fixed throughout the study.
A “pick” conducted in a user’s personal territory was associated with that
user, which allowed them to subsequently “drop” the transferred object
on their personal tablet. Similarly, picking up an object from their personal
tablet allowed them to drop the object onto their personal territory, without
interfering with others’ tabletop interactions.

Within the context of the DOMINION game, tabletop picks were enabled
via a context menu that could be opened by tapping on a card (or deck
of cards). (While the use of a context menu for initiating the “pick” action
was originally due to technique limitations in implementing a “pick-up”
grab gesture in our original hardware and software, it turned out that this
approach later allowed for in-game efficiencies that were very popular and
often requested by our players, such as multi-card pickup menu options,
that would have been very difficult to achieve using gesture interaction.)
Successive taps on the menu allowed for multiple cards to be picked up and
then transferred together to a different location. Cards being transferred
could then be dropped either back on the tabletop by tapping in the
user’s personal territory or dropped onto the user’s tablet. Dropping the
cards on the tablet required a “swipe-down” gesture from the top of the
tablet screen (i.e. a downwards drag action) to avoid interference with card
manipulation actions. For convenience, if the tablet interface was empty,
the user could tap anywhere on the tablet interface to drop transferred
cards. A “swipe-up” gesture on the tablet (i.e. an upwards drag action)
initiated a “pick” action from the tablet. Several cards could be transferred
together performing multiple successive pick actions on the tablet before
tapping on the tabletop.

63

Initial state
Tabletop surface

Card

Tablet sur face

Pick

1: card is picked up
from one device

Transfer in prog ress

Drop

3: card is dro pped on
the other devi ce

2: the card is virtua lly
in the player 's hand

Figure 3 (left). BRIDGES cross-device transfer (Scott et al. 2014a); Figure 4 (right). TERRITORY-
ADAPTED-PICK-AND-DROP (TA-P&D) cross-device transfer (Scott et al. 2014a).

Two control mechanisms were implemented to allow a user to temporarily
perform pick and drop actions in the shared territory on the tabletop. An
IMPLICIT CONTROL mechanism allowed a user to touch and hold any
empty spot in that person’s personal territory to extend it to also cover the
shared territory, allowing them to temporarily pick or drop cards directly
in the shared territory. An EXPLICIT CONTROL mechanism allowed a user
to place a digital token labelled, “I Control the Centre” in their personal
territory to extend their territory to cover the shared territory, and to allow
them to pick or drop cards directly in the shared territory.

Post-Transfer State. An important design consideration when implementing
a cross-device transfer mechanism within the context of a card game
application like DOMINION is the two-sided nature of the game cards (i.e.
each card has a back and front side). The simplest approach—to retain a
card’s face-up/down state at its originating point when it is transferred—
would introduce signifi cant interaction overhead post-transfer. For instance,
most cards in the tabletop decks are initially face-down to preserve the
secrecy of the card’s value. Yet, users are likely to want all cards on their
personal tablet to be face-up, as this space is private from others’ view
(unless they chose to disclose the tablet contents). Thus, the common game
action of moving fi ve cards from tabletop decks to one’s personal tablet
would require signifi cant amounts of tedious turn-over actions after these
transfers. Consequently in both the BRIDGES and TA-P&D techniques,
cards transferred to a personal tablet were automatically turned face-up,
regardless of their originating face-up/down state.

In transfers to the tabletop, the face-up/down state varied by technique.
With TA-P&D, a card dropped onto an existing deck was transferred with
the face-up/down state of the deck (all cards in a deck had the same face-

64

up/down state), while a card dropped on an empty workspace area was
transferred with a face-up value, to facilitate “playing” the card. With
BRIDGES, cards were always transferred from the tablet to the tabletop
face-up since the most common player action after such transfer was to
“play” a card by revealing its value to other players. An exception to this was
if a player had left face-down cards on the BRIDGES after transferring them
from the tabletop (we refer to this behaviour later as employing a “partial-
transfer” strategy), they could then return it face-down to the tabletop.

Summary of Main Study Findings. Analysis of data from the three study
conditions (BRIDGES, TA-P&D (EXPLICIT CONTROL) and TA-P&D (IMPLICIT
CONTROL)) revealed that, in general, all conditions suffi ciently supported
card transfers, as evidenced by the, on average, 322 transfers that occurred
per game across the study. The results also revealed a lack of clear preference
for transfer method across players. Reported preferences differed drastically
between groups, and even between players within groups. For example,
one player commented that having the BRIDGES widgets “partly on both
screens was beautiful and very helpful”, while another player reported that,
in the BRIDGES method, having cards appear “in two places [on both the
tablet and tabletop] was a little unwieldy”. Similarly confl icting comments
were made about the TA-P&D method: One player reported that “Pick up
is a much better mechanic [than BRIDGES]”, while another commented that
“Picking up cards was NOT intuitive”.

Table 3. Average participant ratings on enjoyment and awareness-related post-
condition survey questions from Study 1 (1=strongly disagree, 7=strongly agree).

The RM-ANOVA analysis of the post-condition questionnaires similarly
revealed no consistent player preference or perceived utility for any single
transfer method. Participant ratings were generally positive on enjoyment
and awareness-related measures (with mean ratings of 5.4 to 6.3 out of 7),
with no signifi cant differences across conditions (see Table 3).

The qualitative analysis shed light on the lack of clear preference between
transfer techniques. It revealed that the effectiveness of a given transfer
technique was player- and context-dependent. Preliminary analyses revealed
that players in the two TA-P&D conditions rarely, if ever, used either the
Explicit or Implicit Control methods for picking and dropping cards directly
in the shared territory (i.e. most picks/drops were performed in the players’
personal territories). Thus, both TA-P&D conditions were aggregated into a

65

single TA-P&D condition for the in-depth qualitative analysis. This analysis
revealed several key benefits and limitations of each method that impacted
their use: the required cognitive and physical effort, and the ability of the
method to maintain the privacy and secrecy of transferred data.

Some players found the TA-P&D transfer method more cognitively
demanding than the BRIDGES method since the TA-P&D method required
players to mentally keep track of which card(s) they had picked up, and were
currently holding, during the transfer process. Once a player picked up a
card it would disappear—“in the ether”, as reported by one participant—
and was no longer visible on either the tabletop or tablet until the
corresponding drop action occurred. While both the tablet and tabletop
interfaces provided visual feedback in response to pick/drop actions, such
as a short animation on the tabletop after a pick occurred, and the hand-of-
cards being rearranged on the tablet after a pick/drop action, these interface
changes appeared to be too subtle, or were sometimes occluded from the
player’s view. In contrast, cards were always visible on the BRIDGES widgets
during the transfer process, eliminating any mental burden from players
regarding the state of the cards. Consequently, players reported that it was
“easier to keep track of cards” with the BRIDGES method.

Despite its cognitive simplicity, BRIDGES required more physical effort than
the point-to-point TA-P&D method. In BRIDGES, players had to drag cards
across the tabletop to/from the TABLETOP BRIDGE and to drag cards on/
off the TABLET BRIDGE during each transfer. Also, multi-card transfers
required multiple drag actions to/from the respective BRIDGES. Thus,
some players found transferring cards with BRIDGES to be quite tedious, as
evidenced by the player comment, “The hand zone [BRIDGES] was super
annoying… It just added more clicks to the game.” In contrast, TA-P&D
allowed for multiple cards to be picked up at once and then transferred
(and dropped) together.

BRIDGES was also found to be less privacy-preserving than TA-P&D. As
mentioned in the Post-Transfer State section, all cards transferred from the
tablet to the tabletop in BRIDGES arrived face-up on the TABLETOP BRIDGE
to simplify post-transfer game actions, which commonly involved “playing”
a card (i.e. revealing its value to opponents). However, at the end of each
player turn, players discarded unplayed cards onto the player’s discard deck,
typically located in their personal territory. In highly competitive games,
revealing the value of discarded cards could reveal a player’s game strategy to
observant opponents, potentially reducing a player’s competitive advantage.
The “partial-transfer” strategy described early was adopted by some high-
competitive players to help preserve card secrecy with the BRIDGES method,
but this strategy had limitations that made it unusable for non-expert players
(see Scott et al. (2014a) for details). In contrast, the TA-P&D method used the
drop context to determine the face-up/down state of transferred cards. Thus,
the secrecy of the card values dropped onto a face-down deck, such as the
discard deck, would be preserved.

66

In Summary, while the BRIDGES method provided simple, straightforward
usability that provided persistent feedback of the transferred cards, it also
was less physically efficient and did not preserve the privacy of transferred
objects as well as the TERRITORY-ADAPTED PICK-AND-DROP transfer
method. As privacy is often an important goal of providing personal
surfaces in a multi-surface environment, and efficiency of an interaction
method is always an important usability goal for interaction techniques,
we chose to investigate the TA-P&D method further in subsequent studies.
More specifically, these follow-up studies focused on reducing the cognitive
effort required to use this method for content transfer.

Improving P&D Transfer with SURFACE GHOSTs Visual Feedback
A common HCI approach for helping people understand ongoing changes
in a computer system is to provide persistent visual feedback related to
changes in system state (Smallman and St. John, 2003; Scott et al., 2006;
Chang et al., 2014). Study 1 revealed that the brief visual feedback provided
after a card was picked up on either the tabletop or tablet was insufficient.
During the actual transfer stage, no visual feedback was provided to
indicate that cards were being “held” by the user. Thus, if someone became
distracted after picking up a card—for instance, by an opponent’s game play
actions or an ongoing conversation—they might forget they were holding a
card and hence be surprised when the card appeared in the interface when
subsequently touching the tabletop or their tablet.

Changing a virtual object’s visual appearance has been previously used
to indicate changes in object state. For example, in Rekimoto’s (1997)
original P&D implementation, when the digital pen hovered over the target
display (within millimetres), the transferred object was displayed with a
virtual shadow cast underneath it. This object-with-shadow representation
would follow the hovering pen around in the interface until the object was
dropped on the display, and then the shadow would disappear, leaving the
active object. Similarly, “shadow” or “silhouette” object representations
have been used to indicate objects being copied across adjacent tablet
devices (Hinckley et al., 2004) and objects being held above the tabletop
in a 3-dimentional tabletop workspace (Hilliges et al., 2009). Based on this
prior work, we hypothesized that showing a similar visual representation of
transferred cards in the interface during the transfer process may help reduce
the cognitive effort associated with using our touch-based P&D transfer
method. We also felt that providing feedback on who was transferring which
cards would further reduce any user confusion in our multi-user setting. So,
we designed the SURFACE GHOST object representation to provide visual
feedback of cards being transferred with our touch-based P&D transfer
method.

In Study 1, players tended to position their tablets directly along the
tabletop edge. Thus, cross-device transfer interaction occurred largely
over the tabletop surface. Therefore, we hypothesized that displaying
visual feedback of transferred objects on the tabletop as the objects are

67

carried over the tabletop surface should provide (sufficiently) persistent
visual feedback during transfer. Accordingly, the SURFACE GHOST visual
feedback was designed to appear in the tabletop interface underneath the
“owning” user’s hand as it traveled across the tabletop surface between the
originating pick location and the target drop location. SURFACE GHOSTs
were displayed as semi-transparent, greyscale versions of transferred
objects. When multiple objects were being transferred at once, they were
stacked together and a counter displayed the total number of transferred
objects. Figure 5 illustrates the SURFACE GHOST visual designs for single-
object (c) and multi-object (d) transfers in a digital card game.

To accommodate concurrent multi-user card transfers, the SURFACE GHOST
design also conveyed ownership of the transferred object(s) through a
number of static and dynamic design features. The basic SURFACE GHOST
design provided several implicit indications of ownership: upon pick up the
SURFACE GHOST object would “fly” (via a brief animation) toward its owner,
the SURFACE GHOST object was oriented toward its owner, and it was
displayed in real-time beneath the owner’s hand as their hand moved across
the tabletop surface. As we were unsure how apparent such ownership
information needed to be in DOMINION game setting, we developed
two versions of the SURFACE GHOST design. The IMPLICIT OWNERSHIP
version provided the above ownership information along with another, still
subtle, indication of ownership; a large dark arrow attached to the bottom
of the SURFACE GHOST object that “pointed” to the owning user (Figure
5, c and d). The EXPLICIT OWNERSHIP version replaced the black arrow
with a more visually salient representation of the owner; a semi-transparent
white silhouette of the owner’s arm displayed on the tabletop beneath the
user’s physical arm. The SURFACE GHOST object was positioned at the
arm silhouette’s hand (Figure 6), indicating that that user was “holding” the
card.

To implement either of these SURFACE GHOST designs, it was necessary
to move beyond a “current” T-MSE set-up to a “future” T-MSE set-up that
provided multi-user identification and above-the-surface tracking. In this
enhanced environment, the system was able to keep track of who was
transferring which cards. Thus, it was no longer necessary to divide the
tabletop into personal and shared territories to facilitate simultaneous multi-
user P&D transfers. Hence, in Studies 2 and 3, users could perform pick
or drop actions at any location on the tabletop interface. So, we dropped
the “Territory-Adapted” aspect of our P&D implementation, and refer to
the technique as simply P&D transfer when discussing the method used in
Studies 2 and 3 rather than TA-P&D. As user-tracking was limited to the area
above the tabletop surface, any pick or drop actions on a tablet were still
assumed to belong to the “owning” user.

Study 2
The goal of Study 2 was to determine whether the SURFACE GHOSTs
visual feedback reduced the confusion people experienced during the P&D

68

transfer process, and improved their awareness of cards being transferred.
We were also interested in learning whether the SURFACE GHOSTs feedback
improved people’s awareness of when other players were transferring
cards during the game, thereby improving their collaborative awareness.
Given the multi-user nature of our task environment, another goal was to
determine how the two different ownership designs (IMPLICIT vs. EXPLICIT)
might impact people’s awareness of transferred objects, and overall transfer
performance.

Figure 5 (left). SURFACE GHOSTs in a card game context: (a) a normal card, (b) a
deck of cards, (c) a SURFACE GHOST (with IMPLICIT OWNERSHIP feedback) of one
card being transferred by the Left Player, and (d) a SURFACE GHOST of multiple

cards being transferred by the Bottom Player (from (Scott et al 2014b)).
Figure 6 (right). SURFACE GHOSTs with EXPLICIT OWNERSHIP in a tabletop card

game context (from (Scott et al 2014b)).

Following the methodology described above, groups of three participants
completed three DOMINION game play sessions using the P&D transfer
method with the three different visual feedback conditions: SURFACE
GHOSTs with IMPLICIT OWNERSHIP (IMPLICITSG), SURFACE GHOSTs with
EXPLICIT OWNERSHIP (EXPLICITSG), and a control condition no feedback
(NF).

Summary of Main Study Findings. Similar to Study 1, players performed a
signifi cant amount of P&D transfers during the study. A total of 4455 P&D
transfers occurred across all game sessions. Similar to Study 1, participants’
preferences were evenly split across the three conditions (6 preferred
IMPLICITSG, 6 preferred EXPLICITSG, 6 preferred the control (NF)). Despite
the fact that a third of the participants preferred the control (NF) condition,
the RM-ANOVA analysis of the post-condition questionnaires revealed that
both SURFACE GHOST conditions signifi cantly increased reported awareness
of transferred cards compared to the control (NF) condition for tabletop-
to-tablet transfers. Yet, the analysis revealed that the SURFACE GHOST
feedback did not provide the same awareness benefi ts for card transfers
in the opposite direction (tablet-to-tabletop transfers). No differences were
found in reported awareness levels between the two SURFACE GHOST
conditions in either transfer direction. Similarly, no differences were found
in reported awareness levels of card transfers performed by others at the
table across all conditions. Table 4 summarizes the reported awareness
levels across conditions and the RM-ANOVA results.

69

 *signifi cant at α=.05.

Table 4. Average participant ratings on awareness-related post-condition survey
questions Study 2 (1=strongly disagree, 7=strongly agree).

Our results show that both SURFACE GHOST designs were more effective
at promoting awareness of transferred objects during transfers originating
on the tabletop than transfers originating on the tablet. The qualitative
data analysis provided insights on this asymmetric awareness benefi t of
SURFACE GHOSTs by revealing how participants used this visual feedback.
SURFACE GHOSTs were found to support three main aspects of P&D
transfer: confi rming that a pick or drop worked, keeping track of how many
cards were picked up, and confi rming that picked up cards went to the right
player.

Confi rming that an intended pick or drop action succeeded was the most
prevalent use of the SURFACE GHOST feedback. Players frequently used
the local animation of the SURFACE GHOST object “fl ying” from the card’s
original location toward the owning user to confi rm picks. Also, players
commonly shifted their hand and wrist positions during pick actions to
facilitate viewing the SURFACE GHOST object located under their palm
(which was more robustly tracked than their fi ngertip) or arm silhouette
during this pick confi rmation process. Similarly, players often double-
checked that the SURFACE GHOST feedback disappeared after a drop
operation. In the control (NF) condition, the lack of feedback often resulted
in participants redoing a whole sequence of actions.

Players also made extensive use of the counter provided in the multi-object
SURFACE GHOST design to track how many cards they had picked up
during multi-card. In the control (NF) condition, players relied on counters
attached to each deck to determine how many cards they had picked
up, by tracking how much the number decremented after each pick up.
This method was more cognitively demanding, as revealed by Study 1. In
contrast, the SURFACE GHOST counter provided the information directly,
without mental calculation, and was available if players missed the original
pickup actions.

The third main use of SURFACE GHOSTS was to confi rm that cards on the
tabletop were picked up by the right person. Due to technical limitations of
above-the-table tracking, the system’s user identifi cation was occasionally

70

incorrect when players were interacting in close proximity. When this
occurred during pickup, the card(s) would be associated with the wrong
user. As part of the pick confirmation behaviour described above, players
commonly relied on the local animation of the SURFACE GHOST object to
confirm the correct user association. Figure 7 illustrates an example where
the SURFACE GHOST object animation helped participants to detect an
incorrect association, during simultaneous proximal interactions. If this
animation was missed, the various forms of persistent and dynamic feedback
provided by SURFACE GHOSTS was also useful: the dynamic movement of
the SURFACE GHOST object following a user’s hand, and in particular, in
the case of EXPLICITSG, the arm silhouette, was reported to be particularly
useful in diagnosing inaccurate user identification.

(a) (b) (c) (d)

Figure 7. Players using SURFACE GHOST animation to recognize that a picked
card went to the wrong player: a) Left Player waits to interact near Right Player’s

hand b) Right Player’s menu (highlight) is oriented toward Left Player due to
inaccurate user identification, yet Right Player does not appear to notice, c) Right
Player picks up card, and d) the Surface Ghost (highlight) flies toward Left Player’s

hand. Right Player says, “I am under the impression that you might have my
cards”. From (Scott et al 2014b)).

The qualitative analysis also revealed that participants unexpectedly
appropriated the P&D technique for transferring cards between different
tabletop locations, rather than using drag-and-drop transfer. All participants
in all conditions exhibited this behaviour, even though they were only
shown how to use P&D for cross-device transfers. They spontaneously,
often accidentally, discovered this possibility during game play. Distance
did not seem to be a main factor for triggering within-tabletop transfers:
the same players were observed using drag-and-drop to transfer cards over
long distances, and using P&D to transfer cards over very short distances.

In summary, we found that SURFACE GHOSTS feedback successfully
promoted transfer awareness during tabletop to the tablet transfers, but
was less effective during tablet-to-tabletop transfers. The lack of improved
awareness during transfers originating on the tablet was likely caused by the
lack of SURFACE GHOSTS feedback during tablet pick and drop actions,
due to the positioning of the tablets outside the active tabletop area.
The study also revealed that both IMPLICIT and EXPLICIT OWNERSHIP
design variations provided sufficient ownership information in most transfer
situations, yet the arm silhouettes provided by the EXPLICIT OWNERSHIP
design provided better support for coping with common technical issues
encountered on multi-touch surfaces, minimizing frustration and improving
the overall user experience. The final study focused on increasing transfer
awareness during tablet-to-tabletop transfers, thereby improving the overall

71

cross-device transfer experience.

Improving Awareness during Tablet-to-Tabletop P&D Transfers
The fact that the SURFACE GHOSTS feedback was unavailable during pick
operations on the tablet was only a minor issue when transferring a single
card: the SURFACE GHOSTS feedback would appear as soon as the user’s
hand was over the tabletop, and so, visual feedback was available almost
immediately after the pick operation. However, during a multi-card pick up
sequence that required the user to make repeated pick operations (recall,
a tablet pick operation involved dragging a card upwards across the top
edge of the tablet using a swipe-up gesture); each successive pick operation
would bring the user’s hand repeatedly back over the tablet surface (and
away from the tabletop surface). Thus, this interaction sequence delayed
the appearance of the SURFACE GHOST feedback until the fi nal card had
been picked up. Consequently, the user had to rely on (sometimes subtle)
changes in the arrangement of cards in the tablet interface to confi rm the
success of the pick operation, which was easy to miss if the tablet contained
a number of visually similar cards.

To address the ineffective feedback on the tablet, we considered various
design solutions. We fi rst considered a variant of SURFACE GHOSTS on
the tablet, but found it had several drawbacks. The fi rst issue was technical:
tracking a user’s hand above a tablet—especially when players moved their
tablet—was highly challenging and not feasible in our tracking environment.
Second, there was limited screen real-estate to display a useful SURFACE
GHOST object or arm silhouette. Also, it would likely be obscured from the
user’s view by their physical hand, or positioned off the display. Thus, we
wanted to provide a device-appropriate feedback mechanism that would
serve the same purpose as SURFACE GHOSTS on the tabletop: convey
which cards, and how many cards were currently being held by the user.
A consistent feedback from Study 1 was that the visual feedback provided
by the BRIDGES mechanism provided high levels of transfer awareness.
Also, the location of the TABLET BRIDGE coincided with the swipe-up and
swipe-down gestures for tablet pick and drop actions. Thus for Study 3, we
included a modifi ed version of the TABLET BRIDGE visualization (without
the BRIDGE transfer functionality). Unlike the split card visualization in Study
1, in Study 3 we displayed miniature versions of entire cards along the top
edge of the tablet during transfer (see Figure 8).

Figure 8. The modifi ed TABLET BRIDGE
visualization. When cards are dropped on tab-
let, miniature cards disappear from TABLET
BRIDGE and appear full size in main tablet
interface below.

We also made improvements to the SURFACE GHOSTS tabletop feedback
and to the overall P&D interaction process to better support the DOMINION
task environment. First, we fi xed an interaction bug revealed during Study

72

2 (detailed in Scott et al. (2014b)) that interfered with touch actions over
the arm silhouette in the EXPLICITSG condition. We also displayed a
second counter on the lower left corner of the SURFACE GHOST multi-card
visualization to improve visibility of the counter. Finally, we added an option
to pick up 5 cards at once to the context menu to facilitate this frequent
Dominion game action. Figure 9 shows the updated SURFACE GHOST
designs on the tabletop used in Study 3.

Figure 9. The updated
SURFACE GHOST
visual feedback and
tabletop environment:
EXPLICITSG (left), and
IMPLICITSG (right).

Study 3
The primary goal of Study 3 was to determine whether the combination
of SURFACE GHOSTS feedback on the tabletop and TABLET BRIDGES
feedback on the tablets improved player’s overall awareness during
P&D transfer, in both transfer directions. A secondary goal of Study 3
was to determine whether our software improvements resolved transfer
performance issues observed in the EXPLICITSG condition in Study 2.

To refl ect these primary and secondary goals, we modifi ed the study
method used in Studies 1 and 3. To address our primary goal of comparing
the effectiveness of adding the TABLET BRIDGE feedback, we included a
tablet feedback factor with two levels: BRIDGE and NO BRIDGE conditions.
To address the secondary goal of assessing the timing performance of the
modifi ed EXPLICITSG design, we included a tabletop feedback factor:
EXPLICITSG and IMPLICITSG conditions. Due to practical concerns involved
with playing full-length DOMINION games in each study condition, we
chose to use a mixed within-subjects (tablet feedback) and between-subject
(tabletop feedback) experimental design, rather than a fully crossed, within-
subjects design, to minimize participant fatigue. Also, as Study 3’s main
measures related to the tablet feedback factor focused on player’s perceived
awareness of their own transferred cards, for practical issues, we utilized a
participant group of size two (similar to Study 1).

Each group completed three DOMINION game play sessions using the
P&D transfer method under three different visual feedback conditions. All
groups experienced the EXPLICITSG tabletop feedback both with BRIDGE
tablet feedback (EXPLICITSG+B) and with NO BRIDGE tablet feedback
(EXPLICITSG+NB), and experienced either the IMPLICITSG tabletop
feedback with BRIDGE tablet feedback (IMPLICITSG+B) or with NO BRIDGE
tablet feedback (implicitSG+NB). Thus, each group only played one
condition with the IMPLICITSG feedback on the tabletop (with or without

73

the TABLET BRIDGE visualization). Our data analysis of the awareness
metrics only included data from the EXPLICITSG conditions to enable more
statistically robust repeated-measures analysis of questionnaire responses,
while our data analysis of the transfer timing metrics utilized both within-
and between-subjects analyses across conditions, as described below, due
to the more numerous occurrences of card transfers available from the
interaction logs.

Study Findings. The data analysis revealed that participants had a strong
positive reaction to the addition of the TABLET BRIDGE visualization.
Twenty-two out of 24 participants preferred having the BRIDGE feedback
on the tablet (18 preferred EXPLICITSG+B; 4 preferred IMPLICITSG+B),
while the remaining two preferred the NO BRIDGE conditions (1 preferred
IMPLICITSG+NB, 1 preferred EXPLICITSG+NB). According to participant’s
post-experiment interview comments, the two preferences for the NO
BRIDGE condition was influenced by a minor interaction difference between
the BRIDGE and NO BRIDGE conditions: the “tap anywhere to drop”
convenience feature when the tablet was empty was missing in the BRIDGE
conditions due to inherited functionality from the Study 1 BRIDGES transfer
method (unfortunately not identified during pilot testing). However, the lack
of this feature was not mentioned by most participants, who appeared to
prefer using the swipe-down drop gesture. For the remaining few who also
commented on this missing feature, their overall preference for the BRIDGE
condition appeared to be strongly influenced by the high level of transfer
awareness it provided.

The data analysis also revealed that providing the TABLET BRIDGE feedback
significantly improved participants reported awareness of transferred cards,
in both transfer directions. Also, analysis of the transfer timing data found no
differences between EXPLICITSG and IMPLICITSG conditions, suggesting
that our software modifications addressed the transfer time performance
issues related to the EXPLICITSG design uncovered in Study 2. As the
timing investigation was included to validate our software implementation
improvements rather than our transfer method interaction concept, timing
results are not included here, but are detailed in an online technical report
(Scott et al., 2015). We expand on the transfer awareness results below.

Perceived Awareness of Transferred Cards. The RM-ANOVA analysis of
the post-condition questionnaire responses from the two EXPLICITSG
conditions revealed the BRIDGE (EXPLICITSG+B) condition significantly
increased reported transfer awareness compared to the NO BRIDGE
(EXPLICITSG+NB) condition for both tabletop-to-tablet and tablet-to-
tabletop transfers. Table 5 summarizes the reported transfer awareness data
and RM-ANOVA results. (Comparing two conditions would normally call
for a t-test statistic, but recall from the Methodology section that tabletop
position was also included as a main between-subjects factor in all RM-
ANOVA analyses across all studies to account for the effect of group. No
effect of tabletop position or interaction across main factors was found.)

74

Table 5. Average ratings on awareness-related post-condition survey questions
(1=strongly disagree, 7=strongly agree).

These results supported our expectation that the BRIDGE condition would
better promote transfer awareness than the NO BRIDGE condition for
tablet-to-tabletop transfers. Yet, they contracted our expectation that the
BRIDGE and NO BRIDGE conditions would provide similar support for
transfer awareness for tabletop-to-tablet transfers, given the effectiveness of
the SURFACE GHOSTS feedback alone to support transfers in this direction
in Study 2. Thus, the BRIDGE condition appeared to effectively promote
transfer awareness in both transfer directions. This result was confi rmed
by the many positive comments participants made regarding the utility
of the TABLET BRIDGE in response to the open-ended survey question,
“What feature of the tabletop/tablet assisted the game play?”, including:
“The visualization of cards at the top of the tablet greatly improved my
awareness of when I had cards in transit.” (P15 EXPLICITSG+B); “You could
see the cards on the tablet that were in transit.” (P5 EXPLICITSG+B); “The cards
appearing on the tablet when in transit was helpful” (P24 EXPLICITSG+B);
and, “Not seeing the cards in transit on the tablet was a hindrance.” (P11
IMPLICITSG+NB).

Review of the interview, open-ended questionnaire responses, and video
data also provided insights on the unexpected positive infl uence of the
TABLET BRIDGE feedback on transfers originating from the tabletop.
Participants reported extensive use of the TABLET BRIDGE feedback,
when available, during tabletop-to-tablet transfers, as illustrated by the
following comments: “The little bar on the tablet at the top to show what
cards you took to the tablet [assisted the game play].” (P22 EXPLICITSG+B
questionnaire); “Sometimes you thought you picked up 5 cards when really
you hadn’t, and hav[ing] that additional feedback on the tablet was nice.”(G7
interview); and, “In the second game they [cards on top of the tablet screen]
disappeared…It was much more clear what you were transferring from the
table to your tablet when you had them up at the top.” (G1 interview).

The video data revealed several specifi c benefi ts of the TABLET BRIDGE
feedback during tabletop-to-tablet transfers. During DOMINION game
play, players make extensive use of the “personal territory” near them in the
tabletop interface. Unlike Study 1 where personal territories were explicitly
delimited in the interface, in Studies 2 and 3, players implicitly established
these territories, similar to common tabletop usage in other contexts (Scott

75

and Carpendale, 2010). The consequence of this territorial behaviour is
that pick and drop actions often occur near the tabletop edge, commonly
causing the SURFACE GHOST visual feedback to be displayed partially
outside the interface. Due to poor touch detection near the tabletop edge
on the tabletop system used in Studies 1 and 2, the active game play area
in the Dominion tabletop application stopped a few centimeters from the
edge. However, since the projected area covered the whole surface, the
SURFACE GHOSTS object and arm silhouette visual feedback continued
to be displayed in the edge area. The upgraded tabletop used in Study
3 provided improved touch detection across the whole surface. So, the
active play area was extended directly to the tabletop edge to facilitate
easier player’s access to game content. An unintended consequence of
this change was that the SURFACE GHOSTS feedback was sometimes
unavailable during pick/drop actions near the table edge. Participants used
the TABLET BRIDGE feedback, when available, to overcome this issue.

The TABLET BRIDGE feedback also helped compensate for the positioning
lag of the SURFACE GHOST and arm silhouette caused by necessary
image smoothing performed on the imperfect Kinect tracking data. Once
participants became familiar with the P&D transfer mechanism, they could
perform card transfers very quickly. Thus, sometimes a transfer was almost
(or completely) finished before the SURFACE GHOST feedback would
appear. In contrast, the TABLET BRIDGE was immediately, and persistently,
available throughout the transfer process. Additionally, the new option to
pick up 5 cards at once from a tabletop deck was used extensively. This
substantially reduced the need for one-by-one multi-card pick-ups, which,
in turn, reduced participants’ use of the pick-up counter on the SURFACE
GHOST multi-card visualization.

Finally, the TABLET BRIDGE feedback also helped participants cope with
hardware input errors, such as errors in touch or gesture detection on the
tabletop and tablet devices or errors in user tracking on the tabletop.
Participants found the additional visual feedback on the tablet helpful for
detecting and managing these issues, as illustrated by the comments, “The
slight finicky-ness [of the tabletop touch detection] was still a problem,
but was helped by the display of cards being transferred at the top of the
tablet .” (P23 EXPLICITSG+B questionnaire) and “[I] Felt the sensor wasn’t
working as well as the first game [a BRIDGE condition]. This could have been
due to having less feedback when I picked up a card. Would have been
nice to know how many cards were in transition.” (P13 EXPLICITSG+NB
questionnaire).

Summary. The study found that providing both TABLET BRIDGE feedback
on the tablet and SURFACE GHOST feedback on the tabletop improved
transfer awareness for both tablet-to-tabletop and tabletop-to-tablet
transfers, thereby improving the overall utility of our T-MSE P&D transfer
technique. The immediate and persistent feedback provided by the TABLET
BRIDGE feedback helped compensate for several technical and usability

76

issues of the SURFACE GHOST mechanism.

Discussion
Our three studies provided significant insights on supporting cross-device
transfer in T-MSE settings. The studies also highlighted how point-to-point
cross-device transfer techniques like P&D can be appropriated for within-
surface transfers to help ameliorate usability issues related to dragging
objects, especially across long-distances, on devices with imperfect touch
input technologies (e.g. dropped objects due to lost or jittery input). We
discuss these lessons learned below.

Make Object State Apparent through Entire Transfer Process. The results
of Study 1 uncovered the need for visual feedback during P&D transfer.
However, Studies 2 and 3 highlighted the specific need for feedback
during the pick and drop actions of the three-phase P&D process (pick,
transfer, drop). The limited visual feedback available on the tablet during
pick operations in Study 2 hindered participants’ perceived awareness
for transfers originating on the tablet. Introducing the TABLET BRIDGE
visualization (without associated BRIDGES portal functionality) in Study 3
provided persistent feedback during the entire P&D process: users could
immediately see each picked card added to the row of miniature cards
displayed on the TABLET BRIDGE, and see them disappear when cards
were dropped on the target device. For tabletop-to-tablet transfers in
Study 3, players could utilize either the SURFACE GHOST feedback on the
tabletop or the TABLET BRIDGE feedback on the tablet to learn the state
of cards involved in the transfer process, providing redundant feedback
(when the SURFACE GHOST feedback was available on the tabletop).
The BRIDGES transfer method from Study 1 provided similarly redundant
feedback throughout the entire transfer process. Both the TABLE and
TABLET BRIDGES displayed all cards being transferred (across a pair of
devices), and at no time did cards disappear from view—they were either
on the tabletop/tablet as full-size active cards, or they were visible on the
TABLETOP/TABLET BRIDGES transfer portals. Not surprisingly then, Study
1 participants consistently reported high levels of transfer awareness in the
BRIDGES condition.

Consider Efficiency at All Stages of Transfer: Beginning, Middle, and End.
While the BRIDGES transfer method provided excellent awareness of
transferred objects, it was also found to be extremely tedious to use in the
DOMINION task context, which required frequent object transfers. The fact
that each transfer operation required interaction to/from the intermediary
BRIDGES containers added addition interaction steps to the overall transfer
process. Participants found this to be especially effortful when performing
multi-card transfers, of which there were many during the DOMINION
games.

The point-to-point nature of P&D transfer allowed for more efficient
transfer, especially as our implementation allowed for multiple cards to be

77

picked-up at the originating location and transferred at once. However,
the frequent need in DOMINION to pick-up multiple (most often 5) cards
each turn, introduced room for improved efficiency at the beginning of a
multi-card transfer process. Indeed, the “pick up 5 cards” option added
to the tabletop menu in Study 3 was highly appreciated, and utilized, by
players. Allowing aggregated card transfer in the BRIDGES transfer method
may be similarly useful for improving its efficiency, for instance, by allowing
a deck of cards to be placed on the BRIDGES. This approach raises the
design issue of whether the aggregated content (e.g. 5 cards) should be
shown separately or in aggregated form on the BRIDGES containers. In
Study 3, the TABLET BRIDGES visualization used the former approach: all
transferred cards were displayed separately. Using this “show all” approach,
users could then remove individual items “from the BRIDGE” on the target
device, or could be given a mechanism (a gesture or button) to allow items
to be removed together. Displaying an aggregated view would only allow
for an all-at-once end-of-transfer action, and may also reduce some of the
positive awareness benefits of the BRIDGES method.

P&D transfer outperformed BRIDGES for end-of-transfer efficiencies as
multiple cards being transferred at once would all drop at the target location.
The “tap to drop” convenience feature on the tablet (available when the
tablet was empty) also improved the drop efficiency of P&D transfer over
the “swipe-down to drop” interaction, as it was more forgiving due to the
bigger interaction target of the whole tablet screen (vs. the top edge for the
swipe-down action) and to the more robust touch detection in the central
area of the tablets used in the studies. As mentioned above, end-of-transfer
interaction, especially on the tablet, could be improved by providing a
mechanism to allow all transferred items to be moved off the BRIDGE at
once. This should be done in a task- and device-relevant way, for instance,
in the DOMINION game, the TABLET BRIDGE could be augmented with
a button located to one side that, when pressed, incorporated all content
on the BRIDGE into the hand of cards on the tablet. This would be fairly
simple, as there was only one possible destination for cards fully-transferred
to the tablet. In contrast, automatically offloading the TABLETOP BRIDGE
would be more complex on the tabletop, as the intended destination may
be less clear. Here, a specific drag gesture (e.g. a 2-finger drag) that allows
players to manually move the entire contents of the BRIDGE to the intended
location may be more appropriate.

In Study 3, it was anecdotally observed that some participants misinterpreted
the TABLET BRIDGE visualization to mean that cards picked up on the
tabletop were automatically transferred to the tablet. This misperception
was actually a commonly suggested improvement across the three studies,
and one we have received from others during public demonstrations of
our system. This approach would resolve many efficiency issues discussed
above. However, the approach assumes that players always intend to move
cards to their tablet. Yet, our studies revealed frequent use of tabletop-
to-tabletop transfers, thereby introducing complexities for inferring when

78

cards should be transferred to one’s tablet rather than be moved elsewhere
on the tabletop. Nonetheless, the approach warrants further investigation
as it has the potential to greatly improve the efficiency of tabletop-to-tablet
transfers.

Consider Post-Transfer State, Utilize Context if Available. Another limitation
of the BRIDGES method is its inability to infer the target location, and hence
intended purpose, during tablet-to-tabletop transfers. Consequently, the
same post-transfer state was applied to each transferred card: Cards were
always transferred face-up onto the TABLETOP BRIDGE to facilitate the
common “reveal a card” action. However, this design decision was not
universally appreciated. The inability to control the post-transfer card state
with BRIDGES prompted highly competitive players to adopt a “partial
transfer” strategy, in which they left drawn cards sitting on the BRIDGES.
This allowed them to keep cards face-down on the tabletop at the cost
of not being able to fully view, or manipulate, cards on the tablet. These
players strongly preferred the context-dependent manner of determining
the post-transfer state used by the TA-P&D (and P&D) transfer method:
Cards transferred to the tabletop took the face-up/down state of any deck/
card they were dropped onto, or were placed face-up if dropped onto an
empty area. This design decision was driven by the application task (i.e.
the DOMINION game) and an early analysis of common game actions (and
associated player intentions).

In the DOMINION game, the possible states of transferred objects were
relatively limited: cards and card decks were the only application objects,
card size and orientation were fixed on both the tabletop and tablet, and
cards were either face-up or face-down. (In Study 1, orientation of cards
(and decks) on the tabletop was automatically determined by whether they
were located in a personal territory or the shared territory. In Studies 2 and
3, cards (and decks) were automatically (orthogonally) oriented toward
the table side of the “owning” user after P&D transfers or drag actions.)
However, in other task contexts, the possible object states that should be
considered after transfer will vary, and may include, for instance, the scale
(size) and orientation of content objects, or whether they are separate
or aggregated, and for multi-dimensional objects, what side (or sides) is
displayed. The size disparity between a large surface and smaller personal
surface may play a factor. For instance, if a document that is currently being
viewed on a smartphone display is transferred to a shared tabletop, it may
be useful to display a larger portion of the document on the larger tabletop
display than was visible on the smaller smartphone. Ultimately, if post-
transfer state is determined automatically by the system, it should select
a task- and device-appropriate state that best facilitates people’s intended
task activities. The selected state should optimize the overall efficiency of
the transfer process by minimizing any necessary interactions to achieve a
desirable post-transfer object state. Any contextual information available
about the intended target location, transfer direction, task phase, etc. may
be helpful in inferring a reasonable post-transfer state.

79

Consider Within-Surface Transfer on Large Surfaces. The studies revealed
the common use of P&D transfer to move cards from one tabletop location
to another. Almost all participants performed such tabletop-to-tabletop
transfers. Analysis of the interaction logs for Study 2 showed no consistent
pattern of participants’ use of P&D transfer compared to drag actions
related to the move distance: P&D transfers appeared to be as equally
likely to use for short-distance tabletop moves as for long-distance moves.
The video data revealed several possible motivations for choosing P&D
over drag to move a card/deck on the tabletop. First, participants often
appeared reluctant to drag cards/decks directly over other cards/decks,
possibly due to uncertainty over the consequence of such actions (i.e. the
deck/card may be disturbed). Thus, they sometimes dragged cards in a
wide path around other tabletop content, or simply used P&D transfer to go
above the tabletop content. Second, the imperfect touch detection on the
tabletop sometimes caused the touch input to fail and cards to drop onto
other content. One such instance in Study 3 prompted the user comment,
“the deck just swallowed my cards”. This type of input errors, unfortunately
all too common in existing large-surface hardware, creates significant
frustration for users. Long-distance drags are particularly vulnerable to lost-
touch situations. The fact that the P&D transfer method required minimal
touch interaction on the tabletop provided a reasonable coping strategy
for moving content, especially across a long distance, giving the tabletop’s
imperfect touch detection.

Conclusions
Our studies investigating cross-device transfer demonstrated how the
existing cross-device transfer methods virtual portals (BRIDGES) and
physical proxy (PICK-AND-DROP) can be applied to both “current” and
“future” table-centric multi-surface environments. The studies revealed
both methods, with our adaptations optimized for touch-based devices,
effectively supported the significant amount of transfer required by the
experimental task (the DOMINION card game). They also revealed several
key interaction design requirements for cross-device transfer, including the
need for persistent feedback throughout the entire transfer process, the
need for efficient multi-object transfer, the need to preserve privacy and
content secrecy throughout the transfer process when desired, and the
need to consider post-transfer object state.

While our studies revealed many useful insights, further study is warranted
in a number of directions. First, occasionally in our studies, players wished
to transfer cards directly from one tablet to another when “giving a
card” to another player. Moreover, one can imagine other task contexts,
particularly during more cooperative group activities, where people might
want to exchange task content directly from one tablet to another. Future
design extensions should consider this functionality. Similarly, other design
extensions might include the ability to “share” tabletop content on someone
else’s tablet to allow more cooperative transfer patterns between available
surface devices.

80

High-Performance Interfaces for Touch Surfaces

Carl Gutwin, Andy Cockburn, Sylvain Malacria, Scott Olson,
and Ben Lafreniere

(Portions of this chapter first appeared in the following publications: Carl Gutwin,
Andy Cockburn, Joey Scarr, Sylvain Malacria, and Scott C. Olson. 2014. Faster
command selection on tablets with FastTap. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ‘14). ACM, New York, NY, USA,
2617-2626. DOI=http://dx.doi.org/10.1145/2556288.2557136. Carl Gutwin, Andy
Cockburn, and Benjamin Lafreniere. 2015. Testing the rehearsal hypothesis with two
FastTap interfaces. In Proceedings of the 41st Graphics Interface Conference (GI
‘15). Canadian Information Processing Society, Toronto, Ont., Canada, 223-231.)

Introduction
Desktop interfaces often offer multiple ways to select the same command,
and the different mechanisms can have very different performance
characteristics. For example, selecting commands from menu hierarchies
is slow when compared to keyboard shortcuts and toolbars, which provide
access to commands with fewer actions. Having these types of shortcuts
in an interface can substantially increase a user’s efficiency over time, by
allowing the user to learn quicker methods of invoking the commands they
use most often.

On portable touch-based surfaces, however, interface shortcuts are seldom
available. The lack of a physical keyboard means that there are no keyboard
shortcuts for quick selection, and limitations on screen real estate leave
little or no room for always-visible components such as toolbars. Touch-
based command interfaces, therefore, often take the form of tedious menu
hierarchies, with no way of making a transition to an expert method of
interaction. This greatly decreases the utility of touch devices for productivity
tasks.

One widely-studied interface that supports expertise on touchscreens is the
marking menu, a type of radial menu that allows visual inspection of menu
items for novices, and rapid gestural interaction for expert users (Kurtenbach
and Buxton, 1991). However, the contact-move-lift actions for marking
menu gestures may take longer to perform than a simple tap action. With
multi-touch capabilities widely available in modern tablet computers, there

81

are opportunities for interfaces that support rapid command execution for
experts, as well as smooth transitions from novice to expert use (e.g., Bailly
et al., 2010; Roy et al., 2013).

In this paper, we present FastTap, a new rapid-access interaction technique
that allows fast command selection on multi-touch devices for both novice
and expert users. As shown in Figure 1, FastTap uses the entire screen
to present a spatially-stable grid of commands – based on the recent
CommandMap interface (Scarr et al., 2012). The command overlay is
hidden by default, and is shown when the user holds their thumb on the
grid activation button. The interface can then be inspected, and commands
can be selected with a fi nger; when the user lifts their thumb, the grid
disappears.

Novices use the interface by showing the grid and visually searching for the
commands they need. As users become familiar with commands, however,
they remember item locations in the grid, leading to expert behavior –
experts can select a command with a single ‘chorded’ tap using the thumb
and forefi nger, without waiting for the grid to appear. Similar to marking
menus, this design follows Kurtenbach’s principle that ‘guidance should
be a physical rehearsal of the way an expert would issue a command’
(Kurtenbach, 1993) – in other words, since the novice and expert interaction
methods require similar motor actions, users can develop spatial and muscle
memory of the action required for each command through natural use.

Figure 1. FastTap interface. Left: default state of the interface (gridlines enhanced).
Center: FastTap grid overlay after touching the activation button. Right: FastTap
selection by chording with the thumb and forefi nger, without waiting for the overlay.

To assess the performance of FastTap, we carried out a controlled study
comparing selection time and errors with FastTap and marking menus. Our
study showed that selection time was signifi cantly and substantially faster
with FastTap (mean 1.6 seconds per selection) than with marking menus
(mean 2.4 seconds). In addition, FastTap was signifi cantly faster at all levels
of expertise with the interface, and provided an additional speed benefi t
when multiple commands were carried out in sequence. We found no
differences in terms of errors, effort, or preference.

82

Our work makes three main contributions. First, we introduce a new
interaction technique for tablets that was significantly faster than marking
menus in an initial study. Second, we further demonstrate the power of spatial
memory as an organizing principle for visual interfaces, and demonstrate
how spatial memory can be exploited together with multi-touch input to
produce rapid command selection interfaces. Third, we provide empirical
results about user performance with FastTap and marking menus.

Background: Supporting Transitions to Expertise
Understanding skill acquisition has long been a basic objective in psychology,
and in HCI, numerous techniques have been proposed to help users
achieve higher performance. These techniques fall into four main groups:
intra-modal improvement, which aims to boost performance within the
current interaction mechanism; inter-modal improvement, which involves
improvements through switching to a faster style of inter-action; vocabulary
extension, which tries to increase users’ knowledge of the commands
that are available within an application; and task mapping, which involves
improving the user’s task comprehension or solution strategy (see survey by
Cockburn et al., 2014).

Many different types of techniques have been suggested in these areas,
including different training methods, shortcuts for experts, memory-based
retrieval interfaces, adaptive interfaces, and task-based customization.
Memory-based expert techniques – including keyboard hotkeys, gestural
interfaces, command languages, and spatial-memory-based interfaces
– have been shown to be particularly fast for experienced users. These
techniques are rapid because they involve fewer and faster operations
when a user is experienced – rather than navigating or searching for a
command like novices do, the expert user can just remember and execute
the command. Importantly, these techniques normally involve inter-modal
changes (users must switch from one interaction method to another to
increase performance) – for example, switching from mouse-and-menu
operation to hotkeys. Rehearsal-based techniques, reviewed below, seek to
minimize this inter-modal transition (Kurtenbach, 1993).

Learning and skill development are critical foundations to the idea of expert
interfaces for surfaces, and several concepts are important. First, interface
learning can be organized into three stages as proposed by Fitts and Posner
(1967) – cognitive, associative, and autonomous. During the cognitive
phase, users learn what the interface contains, and they rely on visual search
to identify commands. During the associative phase, users know what the
interface contains, and they begin to focus more on how the execution
occurs. They begin to remember where in the UI each command is located,
and can move there more and more quickly as they build experience. During
the autonomous phase, people attain automaticity – they can execute
commands quickly, without attention, and in parallel with other activities.

In addition, research has shown that although incidental learning is possible,

83

particularly with spatial locations, the depth of mental effort put into learning
an interface can be correlated with their eventual memory of the interaction
mechanisms (e.g., the gestures in a command set, or the location of items
in the UI). Craik and Lockhart’s (1972) “levels of processing” framework
suggests that a deeper, more effortful, mental encoding in memory leads to
faster retrieval and longer persistence. The relationship between effort and
learning has been demonstrated in research on learning object locations and
learning shape-writing. In the motor learning literature, deliberate practice
has been identified as a key requirement for acquiring expert performance.

Despite the increased performance ceiling of expert interfaces, however,
several studies of real-world use show a tendency for users to persist with
slower, suboptimal methods. Researchers have suggested several reasons
for this phenomenon, including:

• Satisficing. Users may opt for a strategy that they know is “good
enough” for their current purposes, even if they know that a better
solution exists (Simon 1987).

• Paradox of the active user. Carroll and Rosson (1987) suggest
that users who are engaged in ongoing tasks will often continue
using known methods rather than learning new ones, and will
generally apply known methods to new problem situations.

• The value of feedback. Fu and Gray (2004) suggest that users
can prefer well-practiced novice methods if these provide fast and
incremental feedback (particularly in the associative phase).

• The “guidance hypothesis.” Guidance provided to facilitate
learning of an expert technique (e.g., feedback provided during
an action) can become relied upon, degrading retention and
performance when the guidance is no longer present (Schmidt,
1991).

• Local optimality. For any single action, using a known but slow
mechanism is likely to be faster than learning a new one (Gray et
al., 2006).

• Performance dips. Switching to a new interaction modality
usually incurs a performance dip (as users must learn the new
techniques); users may therefore be reluctant to switch because it
means a (temporary) reduction in performance (Scarr et al., 2011).

Researchers have considered several methods for helping users over these
obstacles – for example, by punishing the use of the novice method, by
increasing awareness of the expert method, by providing feedforward to
support expert command execution, or by showing the user how much
their performance could increase if they switched to the expert method. An
alternate approach, however, is to design techniques that do not require
overt methods of encouraging or forcing the user to switch to the expert
method, and rather provide a natural and gradual transition from novice to
expert behavior.

84

Several interfaces have been proposed that attempt to avoid the
“performance dip” between novice and expert use. These systems use
Kurtenbach’s (1993) principle of rehearsal to enable knowledge transfer from
novice to expert methods. The principle states that novices should carry
out selection actions in the same way that experts do; therefore, incidental
learning will happen through everyday use, and as users gain experience
with the interface, they will gradually build up the memory that they need to
use the expert method. Feedback and guidance appear for novices, but as
users become more experienced, these supports can be removed.

Kurtenbach explored rehearsal in detail with the Marking Menu technique
(Kurtenbach, 1993). Novices use this technique as a standard radial menu,
in which the menu’s visual representation appears a short time after the
user holds their stylus down on the screen. As users gain experience with
the locations of items in the menu, they can start converting the navigation
motions needed to reach the item into a gestural “mark” – which can be
performed without needing to wait for the visual guidance of the menu.
Once expert, users simply draw the marks that correspond to the items they
want to select, which is much faster. Several other techniques have also used
the principle of rehearsal. For example, the SHARK text input technique
allows users to move from touching individual keys on a virtual keyboard
to shapes for words, where the shapes are a fast version of the novice’s
movement from key to key. Similarly, the ExposeHotKey system (Malacria et
al., 2014) allowed people to select toolbar items using the same mechanism
as they used for hotkeys; as users learned the key combinations, they used
the visual guidance of the toolbar less and less.

Design Goals for Shortcuts on Touch Surfaces
As shown in Figure 1, the FastTap interface works by displaying a
CommandMap over the main workspace when the user places their thumb
on an on-screen activation area. In this section, we discuss the design goals
behind FastTap and frame them in the context of related work.

Design Goal 1: Enable rapid command execution
Modern touch-screen applications typically use hierarchical menus and
dialogs, with a few commands accessible on the main display, and others
requiring several pointing actions that slow their selection. Gesture-based
systems, such as marking menus, are one alternative to hierarchical linear
menus, with some implementations appearing in commercial products
(e.g., Autodesk Sketchbook Pro). Marking menus allow practiced users to
traverse a radial menu hierarchy in a single gesture, speeding up interaction.
However, navigating the hierarchy can still be slow, and marking menus are
inherently limited in terms of the number of items that can appear at each
hierarchical level (see Design Goal 3 for extensions to marking menus that
can reduce this problem).

Multi-touch technology has created new opportunities for designing efficient
command selection interfaces that exploit the higher bandwidth available

85

with multiple concurrent contacts. For example, Wu and Balakrishnan
(2003) describe multi-finger and whole-hand interaction techniques for
tables, including a selection mechanism that posts a toolglass with the
thumb, allowing selection with another finger. Similar techniques are used
and studied in Wagner et al.’s (2012) BiTouch system, but with a focus on
handheld tablets where the thumb of the non-dominant hand is used to
post interface components.

Multitouch marking menus (Lepinski et al., 2010) and finger-count menus
(Bailly et al., 2008) both allow users to specify a menu category by changing
the number of fingers used to touch the screen (thus reducing the number
of levels that must be traversed). Other techniques parallelize the hierarchy
traversal: for example, Banovic et al.’s (2011) multi-finger pie menu allows
users to post the menu with one finger and select an item with another; Kin
et al.’s two-handed marking menus (2011) allow users to draw the marks for
different menu levels simultaneously, by using both thumbs. However, these
higher-bandwidth techniques do not always improve performance, since a
more-complex control action may take more time to retrieve and execute.

One key characteristic that determines whether a command selection
interface is efficient is the number of separate actions needed to navigate
to an item. Reducing this number is a main design goal of Scarr et al.’s
(2012) CommandMap technique, which uses a full-screen overlay to display
as many commands as possible at once. These commands can be selected
with a single action, which is faster than the multiple navigational steps
needed for hierarchical menus and ribbons. Scarr et al. also showed that
navigational errors (e.g., choosing the wrong menu) substantially increased
the time needed for hierarchical organizations. In this work, we adapt the
CommandMap’s flat and spatially stable design to work with mobile devices.

Design Goal 2: Support a transition to expertise
One of the primary advantages of marking menus is the way in which they
support a smooth and rapid transition to expert use. After activating a
marking menu, a novice user can wait for a short time to see a labeled radial
menu appear, from which they make their selection with a touch gesture;
an expert user can make the same gesture without waiting for the menu to
appear. Since the motor actions for the novice and expert uses of the menu
are identical, users learn the expert gestures through normal interaction.

This principle of rehearsal is extremely important to the development of user
expertise. FastTap is therefore designed to support rehearsal during novice
use. In a similar manner to marking menus, the command grid only appears
on-screen after a delay; users with spatial or muscle memory of the interface
can interact instantly without waiting for the visual display, using the exact
physical action they used as novices; intermediate users suspecting the
desired command location but unwilling to execute it without confirmation
can also benefit from FastTap, by anticipating the location of the target,
positioning their finger over it while waiting for the grid to appear, and

86

selecting the command after visual confirmation.

Design Goal 3: Support a large number of commands
While marking menus are generally limited to eight or twelve commands
per level (Kurtenbach, 1993), various extensions significantly increase this
limit. Polygon menus and flower menus both allow more commands by
increasing the types of gestures available. More recently, Roy et al. (2013)
developed Augmented Letters, a system whereby users draw the first letter
of a command on the screen, then select from a radial menu of resulting
candidate commands. OctoPocus recognizes gestures by shape, and
provides visual suggestions for the remaining gesture based on the initial
movements (Bau and Mackay, 2008). While these systems increase the
number of commands that marking menus can support, they still rely on
gesture-based interaction.

Rapid execution is our priority for FastTap, but we also intend that it will
support a wide command vocabulary. In FastTap, the number of items at
each level is limited only by the size of the screen; our prototype uses a 5x4
grid, with one cell being used as the FastTap activation button. However,
this number can be increased through the use of different activation buttons,
or command tabs, which can be arranged along the bottom of the screen.
We consider these design possibilities further in the Discussion.

Evaluating the Performance of FastTap
We carried out a study to assess the performance of FastTap for command
selection on tablets. We compared FastTap to marking menus, which allow
fast command selection for experts and support a smooth transition to
expertise. We compared the two interfaces in a controlled experiment where
participants selected a set of commands over several repeated blocks,
allowing us to examine both novice and more expert selection behavior.

Both FastTap and marking menus were implemented in a functional multi-
touch drawing application (see Figure 2). As described above, FastTap
provides modal access to a grid of command buttons. Selections are made
by pressing a command button, either after invoking the grid display, or
simultaneously with the invocation button (i.e., by chording). There is no
difference in the selection mechanism for novice or expert use – experts
who know the item locations simply tap the command before the interface
is shown. After a chorded selection, feedback on the selected command
is given by displaying the command icon for 500ms (Figure 1, right). The
interface used in the experiment contained sixteen command buttons in a
4x4 grid , of which eight were used as study targets. The sixteen commands
were organized into four rows that grouped similar commands together
(see Figure 2). Marking menus were implemented as a 16-item marking
menu with a two-level hierarchy, adapted from Kurtenbach’s previous work.
Once again, only eight of the 16 items were used as study targets. Upon
invocation of the menu (described below), users move a finger towards one
of four categories shown on screen (Shapes, Colors, Line Style, Line Width),

87

and then to one of the items in that category (see Figure 2, left). The items
in each category were the same as the row groups used in FastTap (Figure
2).

Participants completed a demographics questionnaire, and then performed
a sequence of selections in a custom study system with both marking menus
and FastTap. For each trial, a command stimulus (consisting of one, two,
or three command names) was displayed at the top of the screen; the
participant then selected the command(s) using the interface provided.
Trials involved selecting a combination of one, two, or three individual tools
and properties that could be used within the drawing application (e.g.,
‘Red’, ‘Red Line’, ‘Red Thin Line’). Trials were timed from the appearance
of the stimulus until all targets were successfully selected. In the case of
multiple-command targets, command names in the stimulus were crossed
out as they were selected, and participants could select commands in any
order. Participants were instructed to complete tasks as quickly as possible,
and were told that errors could be corrected simply by selecting the correct
item. Completion times included the time for correcting errors.

Figure 2. Study UIs. Left: marking menu (arrow shows gesture path).

Right: FastTap. Cue appears at top of screen.

Of the sixteen commands in each interface, only eight were used as stimuli,
in order to allow faster development of spatial memory and expertise for
both interfaces. Two commands were used from each interface category
(Shape, Color, Line Style, Line Width). Multiple-command targets were also
composed from these eight commands.

88

For each interface, selection trials were organized into blocks of sixteen
selections (eight one-command targets, four two-command targets, and
four three-command targets). Participants first performed one practice
block of sixteen trials (data discarded) to ensure that they could use the
interfaces successfully. They then carried out 10 blocks of sixteen selections.
Targets were presented in random order (sampling without replacement)
for each block. Short rest breaks were given between blocks. After each
interface, participants filled out a NASA-TLX questionnaire; at the end of
the study, they also answered summary questions about their preferences.

Sixteen participants were recruited from a local university (8 female; mean
age 26.2 years). The study was conducted on a Nexus 7 Android tablet (7-
inch screen, 1280x800 resolution). The software was written in Java, and
recorded all experimental data including selection times and errors. The
study used a 2×3×10 within-participants RM-ANOVA with factors Interface
(FastTap, MarkingMenu), NumberOfCommands (1, 2, or 3 commands per
trial), and Block (1-10). Dependent measures were command selection time,
and errors per command selection. Interface was counterbalanced between
participants. Hypotheses were:

• Mean selection times for FastTap will be faster than for MarkingMenu.

• FastTap will be faster than MarkingMenu both for novices and for
experts.

• FastTap will show an added speed benefit for two- and three-
command targets.

• There will be no evidence of a difference in error rates between the
two interfaces.

• There will be no evidence of a difference in perception of effort for
the two interfaces.

• Users will prefer FastTap over MarkingMenu.

Results: Selection Time
We calculated the selection time for each command by dividing the total
trial time by the number of commands in that trial. As shown in Figure 3
(rightmost bars), mean selection times were about 0.8 seconds faster per
command with FastTap (1.60s, s.d. 0.52s) than with MarkingMenu (2.39s,
s.d. 0.65s), giving a significant main effect of Interface (F1,15=84.37,
p<.0001, n2=0.85). We therefore accept H1 – FastTap selections were 33%
faster overall than the marking menu.

Figure 3 also shows selection time by the number of commands per
trial. ANOVA showed a significant main effect of Number of commands
(F2,30=3.7, p<.05, n2=0.20), and also an interaction with Interface
(F2,30=6.69, p<0.005, n2=0.31). As suggested by Figure 3, both effects can
be attributed to FastTap permitting faster selections when commands are
joined into groups of two or three. Post-hoc t-tests (Bonferroni corrected)

89

show a significant difference between the two interfaces for each number of
commands (all p<.0001). We therefore accept H3.

As shown in Figure 4, selection times decreased across trial blocks;
ANOVA showed a significant main effect of Block (F9,135=17.49, p<.0001,
n2=0.54). There was no interaction with Interface (F9,135=1.43, p=.183)
or with NumberOfCommands (F18,270=1.29, p=.194). We also analysed
the performance difference between interfaces at each block. Bonferroni-
corrected t-tests showed that FastTap was faster than MarkingMenu at all
levels of expertise (all p<.001). Since the advantage of FastTap over marking
menus is consistent across trial blocks, we accept H2.

2381 2385 2409 2392

1746
1537 1517 1600

0

500

1000

1500

2000

2500

3000

1 2 3 Overall

Ti
m

e
pe

r c
om

m
an

d
(m

s)

Number of commands per trial

MarkingMenu

FastTap

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10

Ti
m

e
pe

r c
om

m
an

d
(m

s)

Block

MarkingMenu

FastTap

Figure 3. Mean selection times by Interface and Number (left);
trial times by block (right).

Results: Errors
As with selection time, we analysed errors per command, dividing the
number of errors in a trial by the number of commands in that trial. Errors
were counted as any incorrect selection (note that multiple-command trials
could be carried out in any order). ANOVA showed no effect of Interface on
errors, with FastTap at 0.10 errors/command, s.d. 0.13, and MarkingMenu
at 0.08 errors/command, s.d. 0.11 (F1,15=2.96, p=.11). We therefore
accept H4 (errors are considered further in the discussion section). There
was also no effect of Block (F9,135=0.41, p=.93) or NumberOfCommands
(F2,30=0.51, p=.61) on errors per command; there were no interactions
between any factors.

Results: Subjective Responses
User response was positive to both interfaces, but with no strong differences
in NASA-TLX scores (compared using the Friedman test; see Table 1). No
significant differences were found on any effort question, and the mean
scores were close in all cases; therefore, we accept H5. We also asked
participants which interface they preferred in terms of several qualities (see
Table 2). As with the effort scores, counts were very close with no quality
showing a significant difference. When asked about overall preference,
seven participants preferred FastTap, eight preferred marking menus, and
one had no preference. We therefore cannot accept H6.

Like the preference results, participant comments were about evenly divided

90

between the two selection techniques, and participants often mentioned the
characteristic features of the designs when explaining their preferences. For
example, participants made several comments about how spatial stability
and quick activation helped the speed of FastTap: one person commented
on “the simple and stable location of each icon”; another said “the grid is
faster because it only requires a two finger tap, with one finger always in
the same place. The menu, however, demands specific movements (swipes)
which expend a few milliseconds more time.”

It was also clear that some participants liked the semantic categories of
the Marking Menu, and others liked FastTap’s access to all commands at
once. In favour of marking menus, participant comments included “the
menu compartmentalized the options much better”; “the menu required
less memory”; and “visually a grid with all available options is not as
easily navigable as a menu with divisible submenus.” In favour of FastTap,
comments included: “the options are all available at one time which makes
it easier to pick, and memorization also helps a lot in the grid”; “it is easier
to see the items that you want to select”; and “there is only one level to be
memorized, where [the marking menu] has two levels.”

Some of the participants were initially concerned with the number of
commands in FastTap, but ultimately preferred it: “after a while, the grid
became easier to remember”; “I was able to catch on much quicker [with
FastTap] and be able to visualize where everything was.” Finally, one
participant also mentioned that the sliding motions needed for the marking
menu could present problems on a touch surface, and that FastTap’s tapping
action did not have this problem: “sliding over a surface can be impeded by
many factors like moisture [on the] hand and friction over the surface. […] I
feel the tapping action in the grid is more comfortable.”

Discussion
Why did FastTap work well for both novices and experts? Our experiment
showed that FastTap improved (by 33%) on a well-known technique (marking
menus) for selecting commands on tablets; in addition, FastTap was faster
at all stages of learning. The performance advantage of FastTap can be
explained through an analysis of the steps required for command selection,
in both novice and expert cases. For novices, there are three steps required:
activating the command mode, searching for the desired command, and
executing a selection action. Activating the command mode was the same
in both interfaces, but the interfaces differed in the second and third steps.
Searching for a command in FastTap involves only visual search over all of
the concurrently displayed items, whereas search in marking menus involves
first choosing and selecting a semantic category (Colours, Tools, etc.) and
then searching in a much smaller set of items. Although some participants
found the semantic categories helpful, previous research has shown that
the decision and selection time costs of traversing the hierarchy can exceed
that of a broader visual search (Scarr et al., 2012). The visual search needed
for FastTap could take longer initially, since there are more items to inspect,

91

but the rapid development of spatial memory means that novice users will
quickly make a transition from full visual search to remembering where items
are located. The third step – execution of the selection action – is faster in
FastTap, since a tapping action can be carried out more quickly than the
sliding motion of a marking menu.

For experts, selection requires only two steps: retrieval of the command
action (either a location or a gesture) from memory, and execution of that
action. The performance advantage for expert use of FastTap most likely
arises from the speed of execution, since the memory-retrieval step is
similar for both techniques. Execution of a thumb-and-finger tapping is a
faster action than a drawn gesture, leading to a performance advantage for
FastTap.

Why were multiple selections faster than single selections? Multiple
commands selected with FastTap were each about 200ms faster than
single commands. We believe that this speed-up is due to people’s ability
to visualize multiple command locations within FastTap’s grid interface,
and optimize their movements for multiple selections. For example, we
observed participants re-ordering the selections to reduce finger movement
(e.g., ordering the selections by grid row allowed people to move their
finger in a straighter line). With the marking menu, there is less opportunity
for optimization (e.g., re-ordering the commands does not reduce overall
movement).

Does FastTap lead to more errors? Error rates were high overall in both
techniques (10% and 8% for FastTap and marking menus). This high error
rate is probably an artifact of our experimental protocol, which explicitly
instructed participants to select items as quickly as possible, while noting
that errors could be corrected afterwards. Although FastTap had a slightly
higher mean error rate (10%) than marking menus (8%), the difference was
not statistically significant (p=.11). However, if we assume that effect of
higher errors with FastTap is actually a reliable one, we see three candidate
explanations. First, the quick execution of a selection action in FastTap
may have encouraged participants to view errors as amenable to rapid
correction, thereby encouraging users towards a ‘guess and correct’ mode
of operation. Second, participants may have found the post-selection visual
feedback in FastTap more clearly communicative of the selected item
than the marking menu, again encouraging faster but more error prone
selections. Third, it is possible that people’s memory of an item’s spatial
location was imperfect, and so participants may have experienced ‘near
misses’ more often than with marking menus. Further work is needed to
determine whether the difference in error rates is reliable, and to properly
explain its cause if it is.

FastTap and Marking Menus with Larger Item Sets. Our study tested FastTap
and marking menus with a small command set (sixteen items), and it is
worth considering how the two approaches would compare in the case of

92

a larger interface. The main performance differences between FastTap and
marking menus are in initial visual search (novice behavior) and the number
of actions needed for a learned item (expert behavior). These differences
arise due to the properties of FastTap’s single-level presentation, compared
with marking menu’s hierarchical organization.

With a larger command set, it seems likely that FastTap will require more
visual search than marking menus – provided the hierarchical organization
of the marking menu items is clear (which can be a non-trivial design
problem). However, several prior studies suggest that the novice period
of use is relatively short and users will soon be interacting with commands
that they are familiar with. In this case, FastTap selection time will be similar
to that observed in our study – since only a single invocation and selection
action is needed, regardless of the size of the command set. Marking
menus, however, must create hierarchies because they use less space, and
so experts must continue to execute multiple navigational steps (even if
these are executed as marks).

Recent work on multi-touch marking menus suggests ways that these
navigation interactions can be speeded up – e.g., by encoding top-level
menu categories with different finger postures, or by parallelizing the
execution of navigational marks. Although we believe that FastTap will
continue to compare well against other selection techniques as command
sets increase in size, further work is needed to explore the potential
differences between the spatial-memory approach of FastTap and the
gesture-memory approach of marking menus.

Design issues for FastTap
How many commands can the interface accommodate? Our drawing
interface contained 19 commands in a 5×4 grid, but this is not the limit
for the FastTap approach. In general, the number of commands in the
interface is limited by the size of the device, the minimum desired size of
the targets, and the size of the user’s hand (to facilitate chording). Using the
average width of an adult index finger (16-20mm) as a guideline, it would
be possible to have a grid of up to 40 buttons in an 8×5 layout on a 7-inch
tablet. If we assume that touch targets should be no smaller than 9.6mm
(Parhi et al., 2003), a maximum density of 150 items in a 15×10 arrangement
is possible. However, this size guideline is debatable – larger button sizes
have been shown to provide higher success and satisfaction rates, yet much
smaller targets can also be used, as demonstrated by smartphone virtual
keypads (which can be operated substantially eyes-free with sufficient
practice). There are interesting research questions around users’ ability to
form spatial and motor memories for varying numbers of targets at different
target densities.

Importantly, however, the possibilities for adapting FastTap to high
functionality applications, or to small displays, is not necessarily limited to
the ‘all commands at once’ designs examined in this paper. The capacity of

93

the interface to display candidate targets can be multiplied through the use
of multiple trigger buttons, or ‘tabs’, which organize the commands into
multiple categories – each trigger button would then show a separate set of
commands. As discussed under Design Goal #3, this technique requires the
allocation of additional trigger-button regions in the bottom row of the grid.
Further research is required to determine how well people can remember
these two-finger combinations.

Finally, it is also possible that if the grid interface cannot accommodate all
of the application’s commands, it could still function as a shortcut list for
frequently-used items.

Issues regarding device orientation. Mobile devices such as tablet computers
can be used in different orientations, which changes the aspect ratio of the
screen. There are three possibilities to accommodate orientation changes.
First, the grid could maintain its overall aspect ratio and scale to fit the
smaller dimension of the new orientation, requiring that users adapt to a
different-scale interface. Second, the grid could change its aspect ratio to
fill the new orientation, requiring that users adapt to a stretched version of
the grid. As shown by Scarr et al. (2012), these two transformations would
cause only a minor disruption to spatial selections. Finally, the grid could
maintain its size regardless of the orientation, fitting the most constraining
orientation.

Multiple simultaneous selection. Normal expert selection in FastTap
involves two digits (normally the thumb and one finger; but sometimes two
different fingers). This combination selects one command; however, there
is no reason why additional commands cannot be selected simultaneously
in the same chorded tap. These kinds of selections already work in our
prototype application. Added-finger selections work well only for certain
combinations (because of constraints on positioning the fingers); therefore,
if these are to be used in interface design, further work must determine
which fingers combinations are possible, and which command combinations
are desirable.

Conclusions
Although multi-touch tablets are now common, and are starting to be used
for productivity work, there are few techniques for these devices to support
rapid command selection. In this paper, we presented a new selection
technique for multi-touch tablets called FastTap that uses thumb-and-finger
touches to show and choose from a grid-based overlay interface. FastTap
allows novices to view and inspect the full interface, but once item locations
are known, FastTap also allows people to select commands with a single
quick thumb-and-finger tap. The interface helps users move toward expert
use, since the motor actions carried out in novice mode rehearse the expert
behavior. A controlled study with 16 participants showed that FastTap
was significantly faster (0.8 sec/selection, 33%) than marking menus, both
for novices and experts, and without reduction in accuracy or subjective

94

preference.

Our research thus far with FastTap gives us strong initial results, and future
work will continue in three directions. First, we will continue development
of the drawing application and release a fully-functional version of the app,
in order to gather real-world usage and performance data from a wide
audience. Second, we will develop new prototypes that explore some
of the design issues described above, including tabbed command sets,
complex interface widgets, and interface scaling for larger devices. Third,
we will develop FastTap prototypes for other applications that could benefit
from fast access to commands and shortcuts (e.g., contacts and response
options in a mail client, or favourites and page actions in a web browser).
Our experience with FastTap suggests that the underlying ideas of spatial-
memory-based expertise and quick tap-based access can be successfully
and broadly applied across several application domains.

95

Transmogrification:
Casual Manipulation of Visual Information

John Brosz, Miguel A. Nacenta, Richard Pusch, Christophe
Hurter, and Sheelagh Carpendale

Introduction
It is through manipulation and exploration that we develop understanding of
the world around us. Our goal in this work is to enhance our understanding
of visual information by providing a method to enable flexible exploration
and manipulation of image data.

One common feature of almost all information visualization techniques is
that they require a great deal of work to achieve. They require data, often in
particular formats, as well as a significant amount of time spent configuring
the visualization itself. While these prepared visualizations can be effective,
they cannot be used scenarios where time and data are not available, such
as in discussions and meetings.

Transmogrification, the technique described in this chapter, was created
with the goal of enabling visual arguments to be made when time is limited
and data is not available. It particularly focuses on the scenario where
visuals exist, but not in the configuration that would make the necessary
point. Rather than requiring data, transmogrification makes use of digital
imagery. In this fashion existing visualizations, digital images, pdfs, videos
or any other materials capable of being shown on a digital display can be
used as source material. Consequently, transmogrification is a technique for
manipulation of visual information.

A historic example of where such visual manipulation was useful lies in
the medieval route maps of Matthew Paris. In these maps (e.g., Figure 1),
rather than showing a spatial layout of the journey that we would expect,
the maps are made up of the way-points of the trip laid out almost linearly
one after another. Transmogrification is designed to allow people to do just
this, take a typical spatial map of a route and then straighten it into a linear
presentation.

96

Transforming in a Magical Way
So with this goal of enabling fast and easy manipulations of imagery we
set out to, not just create software, but to design an interface that would
empower these types of interactions.

	 Figure 1. Matthew Paris, Itinerary from Beaumont to Beaune, British Library, ms
Royal 14 C VII, fol 2v.

There were three key elements that were necessary to support our goal:

• A multi-touch interface: specifying shapes with mouse input has
often devolved into manipulating controls points and other tedious
interactions. Multi-touch provides a great deal of control and freedom,
an extremely fast mechanism for interaction, and a feeling of directly
working upon the visual information.

• Data is not required: by aiming for casual environments we cannot
assume that the people we are designing for have the data with them,
or even access to the underlying data at all. With the prevalence of
digital phones, it is easy to create imagery of whatever visual information
one wishes to manipulate – whether that is a sketch on a napkin, or a
precisely rendered scatterplot of millions of points.

• Understandable transformations: the last aspect is that for
transmogrifications to be useful, it has to be clear to anyone using
them how they work. This led us to two important elements of our
interface; animated transitions & “live” results. Animated transitions are
incorporated by, anytime a transmogrification is specified, animating

97

the transformation from one shape to another so that is it clear why
the resulting image appears as it does. The second element is that
the result of transmogrication is real-time and updated on the fl y. One
can shift and move the source visual and the output will change with
every movement, making the result easier to modify and understand,
promoting further exploration and understanding.

How to Transmogrify
Transmogrifi cation operates by transforming an image from one shape
to another. We call the starting shape the source and the fi nal shape the
destination.

So how do we control this transformation in an understandable way? To do
this we describe shapes by specifying three curves: two curves that mark the
edges of the shape, the boundary curves, and the spine curve. The spine is
often midway between the boundary curves but, depending on the desired,
transformation, may be placed differently. This technique is loosely based
on Hsu et al.’s (1993) skeletal distortions. To provide intuition for how the
transformation occurs, examine Figure 2 and consider that it is relatively
easy to change any of the shapes on the left to the center rectangle by
straightening the shape curves (no matter the form these curves may take).
Conversely we can change the rectangular shape to any other by adjusting
its curves as necessary. Consequently we can easily transform any shape
defi ned by three such curves into any other.

Figure 2. Transmogrifi cation occurs through transforming a source shape into a
destination shape. Boundary curves are purple, spine curves are blue. Any source

shape can be transformed into any destination shape.

Once we know how to change shapes into one another, to transmogrify we
need to transform images underneath such shapes into the new shape’s
confi guration. To do so we make use of standard computer graphics texture
mapping. Before going on, let us discuss how these shapes get rendered

98

(drawn). For each shape, in the terms of OpenGL, we would render by
creating two sets of triangle strips, one between each boundary and the
spine. Now to transmogrify we take the imagery under the source shape
and then for each point on the source shape’s three curves we calculate
the corresponding texture coordinate of that image. That is, we would
calculate the same texture coordinates as if we wanted to render the source
shape texture mapped with the underlying image. However, instead of
using the geometry of the source shape, we use the geometric positions of
the destination shape. Texture mapping then performs all the hard work of
distorting the imagery. For a more complete technical description of how
this is achieved please consult Brosz et al. (2013).

Transmogrification Examples
Now that the basics of transmogrification have been explained we will
explore a variety of cases where transmogrification can be put to use.
The first is in creating route maps. These are the aforementioned maps
used by Matthew Paris and others to describe journeys. By aligning a
transmogrification source with the path taken on a normal map (Figure 3) the
transmogrified result is an easily identified route map. In its default behavior
the transmogrification preserves the distance along the spine curve (the
middle of the three green lines in Figure 3). This can be useful in comparing
several route maps at once. In the example shown in Figure 4, six flight
approaches into the Lyons airport are straightened so that the distance and
changes in elevation of each flight’s approach can be directly compared.

Another example of rectifying an image is the scenario of straightening
rivers. This straightening was used in old atlases to provide a comparison
for the length of rivers. An example of this can be seen in J. H. Colton’s
visualization that was recently analyzed by Tufte (1990, p. 77). We can easily
recreate this visualization through transmogrification by merely rectifying
the paths of the different rivers as shown in Figure 5. The straightened rivers
retain differentiating characteristics while being straightened sufficiently for
easy, visual comparison.

99

Figure 3. Creating a route map (bottom) by tracing a path (top).

Figure 4. Transmogrifi ed aircraft fl ightpaths. Original imagery is bottom-left, top-
right image portrays the seven source shapes, while the transmogrifi ed results on

right.

Figure 5. Straightening rivers to show side-by-side comparisons of their lengths
(left). The green lines on the original map show the shape of the un-straightened

rivers (right).

A more advanced scenario is shown in Figure 6 where a cycling route is
straightened for comparison to distance-based elevation and heart rate
data (Figure 6B). This allows viewers to easily determine which parts of the
route required the most effort. However, it may be the case that viewers still
have diffi culty determining where high heart rates occurred along the route.

100

To address this, the heart-rate chart can then be transmogrified to wrap
itself along the cycling route (Figure 6C). This makes it clear geographically
where high heart rates occurred. Figure 6D takes this a step further showing
both the heart rate overlaying the elevation data being wrapped along the
cycling route.

Figure 6. A cycling route (A) is rectified for direct comparison to elevation and
heart rate data (B). The heart rate charts is then transmogrified around the route
within the map to show effort within the spatial context. (D) is same as C, but with
elevation data included. Map contains Ordance Survey data © Crown copyright

and database right 2013.

Another frequently occurring scenario exists when a chart is not within one’s
preferred format such as a pie chart that may be more easily read as a bar
chart. In Figure 7 we change an icicle tree representation into a sunburst.
This is done by using a rectangle as our source shape and a circle as the
destination shape.

Figure 7. Icicle tree representation (left), transmogrified to a sunburst
representation (right).

Transmogrifications can also be daisy-chained, that is we can further
transmogrify imagery created through transmogrification. An example of
this is shown in Figure 8 where two transmogrifications are used to remove
the tied games out of a Nightingale chart outlining wins, losses, and
draws of a football team. To do this a circle source shape is placed over
Nightingale chart to transmogrify it to a rectangular destination creating a
bar chart. Then another rectangle source shape is placed over the non-draw

101

bars (i.e., the blue and red bars related to wins and losses), which is then
transmogrified back into a circle shape, creating a Nightingale chart of only
the wins and losses.

Figure 8. A chart (left) is changed to bar chart (middle),
a subset of which is changed back into a Nightingale chart (right).

The fast nature of transmogrification makes it ideal to quickly prototype
any sort of distortion-based visualization or interaction technique. To
demonstrate this possibility we have re-created Mackinlay et al.’s Perspective
Wall demonstration (1991) for a calendar using three transmogrifiers placed
side-by-side (Figure 9). Note that while the figure is static, within the
software the distortions occur in real-time. That is, different days can be
magnified by moving the calendar image; this allows interactions with the
distortion to be experienced.

Figure 9. Creating a Perspective Wall distortion using three transmogrifiers. The
three green rectangles are the source shapes, the three orange quadrilaterals are

the destination shapes.

In all the examples shown thus far the transmogrification has preserved the
distance along the center of the source shape to match the distance along
the destination shape. However this mapping of space can be interactively
or programmatically changed. One example is shown in Figure 10 where
we transmogrify a driving route between Los Angeles and Los Vegas. The
destination shape was created by scaling the path by the amount of time
spent at each point on the route, stretching the parts of the route where
one would travel slowly and compressing the parts travelled quickly. This
is reminiscent of the hand-drawn route maps discussed by Agrawala and
Stolte (2003).

102

Figure 10. Transmogrification of a route (left) between Los Angeles and Los
Vegas where slowly travelled regions are expanded and quickly travel areas are

compressed.

Another example of disrupting the preservation of distance in transmogrifiers
lies in the possible of correcting perspective distortion; that is, showing the
wall as if it was orthographically projected. In the center image of Figure
11 we transmogrify a wall shown in perspective projection to a rectangle.
While this adjusts the wall to a nice rectangular shape the spacing between
windows and other details is not uniform as we would expect of an
orthographic project. The right image of Figure 11 has used interactive
scaling to shift points along the spine curve to create the uniform spacing
of the wall’s features.

Figure 11: Transforming the side of a building from perspective to orthographic
projection. The center image is the first attempt where windows and other

features are expanded on the left and compressed on the right side of the wall.The
right image is the result of adjusting the source shape’s interactive spacing points

(red dots) to create a uniform distribution across the wall.

103

Summary & Future Directions
Transmogrification is a technique that provides a controllable and fast
way to manipulate 2D images and visual data. It provides people with the
opportunity for manipulation and exploration to better understand visual
information.

Through the included case studies we have shown that transmogrification is
useful in a variety of scenarios: rectifying content, wrapping content around
or within other content, combining different sources of content, providing
distortions based on the features of the image, transform chart layout, and
many other possibilities.

At this point, transmogrification has a limitation in that it can heavily distort
text to the point that it becomes unreadable. To address this problem,
text (or other symbols that are required to be legible in their original form)
needs to be identified in the source imagery and then redrawn at their
corresponding new positions in the transmogrified result. Automatically
identifying such text and calculating this text’s new position are challenging
tasks.

104

105

IMPROVING
SOFTWARE TIME

TO MARKET

106

107

IMPROVING SOFTWARE
TIME TO MARKET

Robert Biddle, Carleton University
Kevin Schneider, University of Saskatchewan

Focus Areas:
2.1 Agile Development and Human-Centered Design
2.2 Application Specific Development Processes
2.3 Requirements Analysis and Testing
2.4 Development Tools

 2.5 Collaborative Management of Software Development

I
ntroduction
Theme 2 of SurfNet concerns the process of building software
in the context of surface computing. There are several aspects,
but in particular this includes surface applications to support
the development process, and also how that process might be
adapted to support the development of surface applications. In

 the sections below, we outline highlights of work on theme 2 in the
latter years of SurfNet.

2.1 Agile Development and Human-Centered Design
Sub-theme 2.1 involved exploring the links between software engineering
and user interaction design. We were especially interested in the “agile”
approach to software engineering, because both that and UI design are
iterative and emphasize collaboration. There are were many projects
contributed on this sub-theme. Exploring best practices was the most
common approach, featuring in several projects led by Carpendale and
Maurer in Calgary on geo-exploration (Rodrigues, 2014) and by Biddle

108

at Carleton on card walls (Gossage et al., 2015) addressed specialized
domains, and the Carleton work on collaborative analysis surveyed a
broader field (Brown et al., 2013). Projects led by Kienzle at McGill as part
of his TouchRAM project (touch applications for reusable aspect modelling)
featured in this area, and used UI design methods for model-based
software engineering (Kienzle, 2013). Work led by Carpendale and Sillito
at Calgary on lifecycles of diagrams and sketches also contributed (Walney
et al., 2015). All these projects involved consideration of collaboration
between the design and engineering efforts, in an effort to understand and
explore how best to organize project work; issues relating to analysis and
testing were especially of interest. Creating lightweight tool support for
collaborative development was also common. This was involved in Maurer’s
project on discussion tools for shared understanding of data (Paredes et al.,
2014), and in Biddle’s projects on collaborative tools for large touch screens
(Wilson et al., 2013; Wilson et al., 2014). The main ideas here involve
interactive visualizations, and other ways of showing analysis results and
design decisions to help software teams better understand and reflect. A
third approach was to focus on usability evaluation of surface applications.
The projects led by Maurer on the “TableNOC” system (Sharma et al., 2012)
and led by Mandrake (Dergousoff et al., 2015) and Gutwin (Cechanowicz,
2013) on Gamification, tackled this issue. These projects especially explored
on usability evaluation for specific kinds of software, monitoring systems
and gamified work-support software. Addressing a more general approach,
Issa, Sillito and Garousi investigated “visual testing” (Issa, 2012).

2.2 Application Specific Development Processes
Sub-theme 2.2 had a focus on processes for specific kinds of software. The
idea was that some kinds of software are created with processes not typical
across software engineering. Games are a common example, because of the
need for collaboration across an especially wide range of disciplines, and
also because of the delicate balance necessary to make games engaging
to play. Specific areas addressed were game development teamwork and
game prototyping. Graham’s group at Queens with their project on “Game
Orchestration”, involves innovative work on “live” gameplay creation, using
ideas from the “game master” in typical in role-playing games (Graham et
al., 2012 and 2014). Also, Hancock’s work at Waterloo concerns prototyping
for a new kind of game to foster social innovation, and is done to help
collaborative solutions to complex cultural, economic or policy problems
(Watson et al., 2013) Of course, not only games require special processes.
One general idea, software “product lines”, involves creating a range of
software applications all at once to improve reuse. This topic was the focus
of much earlier work by Maurer’s group (Ghanam and Maurer, 2010), and
also a motivation for work at Saskatchewan on elements of complex image
processing software (Asaduzzaman et al., 2013; Haque et al., 2013).

2.3 Requirements Analysis and Testing
Sub-Theme 2.3 had a specific focus at what are the traditionally the two
ends of the software process, requirements analysis and testing. The reason

109

is that these are the places where the engineering process must especially
connect with the greater context the software must serve. Usability
testing was mentioned in sub-theme 2.1, above, but here we addressed
functionality testing. One approach involved “Test-Driven Development” for
surface interaction, and had two motivations. One is that in agile proceses
testing work starts early, and the tests are specified early in order to “drive”
development rather than merely check it afterward. The other motivation
is that for surfaces, the touch-interface typically features novel interaction,
and we are interested in seeing how that affects the design. Maurer’s group
did much work in this area earlier in SurfNet (Hellmann et al., 2010 and
2011). Maurer’s “TableNOC” project , a new approach to a monitoring and
control environment, contributes to this by positioning the requirements as
“tests” to be met (Sharma et al., 2012). A more flexible approach to testing
is involved is “Exploratory Testing”. This supports a more epistemic process
where the finding emerge and reframe our findings and expectations about
the software. The TableNOC project also contributes here, because the idea
is explore how monitoring software should work. Ehud’s work on “Two-sided
Transparent Displays” also has contributions because of the novelty of the
platform, where interaction happens on both sides of a surface. A prototype
two-sided transparent display has been developed using projection from
both sides, and it supports touch and tracking of hands on either side of the
display (Li et al., 2014) Biddle’s group at Carleton also took a new approach
to requirements emphasizing the how surfaces seem to encourage more
exploratory interaction (Gossage et al., 2015; Simonyi, 2015).

2.4 Development Tools
Sub-theme 2.4 had a focus on development tools, and we mean this to
include a range of work. In particular, we intended to emphasize tools that
help create surface applications, but we also wanted to include tools that
were themselves surface applications. When we began the network, one
articulated interest was conversion, that being tools for migrating desktop
applications to surfaces”. In later years, this was addressed Schneider’s work
with his colleague Roy and students exploring tools to support software
maintenance, where their interest was leveraging tools on detection of
cloned elements of software, converting them to use surface interaction
(Zibran et al., 2013; Saha et al., 2013). Several projects in the network
addressed tools to support surface application debugging and evaluation.
These included the earlier work of Gutwin’s group on visualization of version-
based collaborative processes, again addressing the challenges of testing
complex software applications involving concurrency (Xue et al., 2011).
Even more projects, however, involved surface computing tools to support
software development. The projects contributing include Schneider’s and
Maurer’s projects mentioned above, but also a number of projects across
the theme. Maurer’s “discussion tools” project (Paredes et al., 2014) is
involved, and Gutwin’s project on version-based collaborative processes
also involves tool support, as does Kienzle’s “TouchRAM” project (Kienzle,
2013), Sharlin’s two-sided transparent display (Li et al., 2014), and Biddle’s
group work on add-ons to improve collaborative exploration (Simonyi et al.,

110

2015, Mirza et al., 2015). This is a wide range of projects with varying aims,
but the common thread is this: as we build all kinds of surface applications,
we also build supporting tools that are also surface applications.

2.5 Collaborative Management of Software Development
Sub-theme 2.5 was about collaborative management of the development
process. In particular, this is about the use of software technology in the
development process, and so has a special relationship with the software
teamroom application area. One area was on management of distributed
software development. Another area involved issue management, and
so bug tracking. There was also work on reviewing source code, which
includes Roy and Schneider’s work on tools to detect code clones (Zibran
et al., 2013; Saha et al., 2013). This area also includes the ongoing work of
Biddle’s group on “Understanding Artefacts for SE-UI Collaboration” where
fieldwork identifies the kinds of artefacts (diagrams, conceptual devices,
etc.) used by teams to coordinate specific activities; for example the new
idea for understanding multi-tasking in operations centres (Samaroo et al.,
2013), and the findings on digital agile card walls (Gossage et al., 2015).
The area also includes several contributions from Anslow’s work with Biddle
on Software Visualization for collaborative review (Anslow et al., 2013 and
2015), and also the work led by Maurer and Anslow on visualization in the
development process (Paredes et al., 2014, Bhaskar et al., 2014).

Conclusions
Looking back on the SurfNet work in Theme 2, several trends emerge. The
main force at work is the compelling nature of the interaction enabled by
touch surfaces. Of course, this is the topic of Theme 1 (Humanizing the
Digital Interface) and the technology to support that is the topic of Theme 3
(Building Infrastructure for Digital Surfaces). But in the work on Theme 2, we
see that the new interaction also affects the software process. The interaction
newly supported in surface computing includes touch and gesture. These
seem more “direct” than earlier interaction styles, in much the same way
the Graphical User Interace (GUI) mouse-cursor interaction seemed more
direct than commands and menus. This point was made well in the paper by
Lee et al. (2012). The trends we can identify roughly correspond to the five
sub-themes discussed above, and we outline them as follows:

Alignment with Interaction Design. Both interaction design and agile
software engineering are iterative human-centred processes, but combining
the two processes can be difficult, even if promising (Fox et al., 2008). Our
work suggests that it may be promising to document best practices that
connect surface interaction with the underlying software. Moreover, there
seem to be some general patterns about where and how these connections
occur.

Some Domains Match the Strengths of New Interaction. The support
for easy exploration afforded by surface computing seems to suit some
domains especially well, namely those where some kind of exploration

111

is critical. This is important in game design, for example, because of the
delicate balance that allows playability; it is also important in kind of image
analysis, and also in other kinds of analysis work. However, GUIs were not
always superior to the command line, which for experts is fast and allows
scripting. Identification of the equivalent distinction between surfaces and
traditional GUIs may lead to more insight.

Liminal Development Processes Suit New Interaction. Software development
involves great care and precision, but not all the steps cannot be determined
precisely. In particular, both requirements analysis and testing involve a kind
of exploration of possibilites. They are liminal in that they are on the edge
of the development process. The need for exploration in these processes
means they have a special connection with surface computing, where the
interaction can be strongly supportive.

New Interaction Means New Development Tools. Surface applications can
support many domains, as the work in Theme 1 shows. However, software
development is itself a domain, and surface tools can therefore support the
domain. We showed this in building several novel surface computing tools
that support the development process itself. And not only do these help
development work, but our experience suggests another advantage. When
developers themselves use surface computing to do their work, they will
better appreciate when where and how it works well. This understanding
will bring designers and developers closer together.

Collaborative Development is Exploratory. Collaboration is a core
principle identified in the “Agile Manifesto”. Another idea in many agile
processes is self-managing teams. It turns our that collaboration in analysis
domains is typically exploratory. This is, when working together we try out
ideas on one-another, give feedback, and refine. This is the main idea of
“intersubjectivity” in the study of human communication. What this means
is that surface computing may be especially relevant to self-managing agile
teams, where surface computing tools will support the process well.

112

Understanding Sketching Practices for Surface
Interface Design

Jagoda Walny, Samuel Huron, and Sheelagh
Carpendale

Introduction
Interactive surfaces are a natural fit for applications that support and
integrate with everyday visual thinking processes, including brainstorming,
conceptualizing, and collaborative work. The high degree of freedom of
input, including pen- and multitouch input, sparks the possibility of more
flexible interfaces that approach the richness of the interactions we already
have with non-digital objects. In particular, it is now possible to create
interfaces that support freeform visual thinking similar to the kind of visual
thinking people do physically on whiteboards or in notebooks. However,
with this richness come an overwhelming number of options for interface
design. Gaining a better understanding of existing, analog versions of visual
thinking practices can guide interaction design for such creative, knowledge
work contexts.

Sketching is a common way of externalizing internal thoughts for a variety
of purposes, which, Kirsh (2010) explains, variously optimize thinking tasks,
for example through offloading memory, enabling the solution of problems
that the mind is unable to simulate, completing tasks more efficiently, and
working with others. Tversky (2008) states that sketches can reveal what
a person is thinking. Arnheim (1980) argues that visual perception and
cognition are intrinsically intertwined. Visual thinking frequently occurs on
analog whiteboards, as noted by Mynatt (1999): “All manner of incomplete
and seemingly vague content was written as participants used their
whiteboard as a scratch surface while pondering concepts much larger than
their surface representations”.

Interest in computational support for sketching dates back to Sutherland’s
Sketchpad (Sutherland & Sketchpad, 1963) and remains an active area both
in research (including the work of Haller et al. on Anoto pen interfaces, e.g.
(Brandl, Haller, Oberngruber, & Schafleitner, 2008), and work into sketch-
based interfaces such as QuickDraw (Cheema, Gulwani, & LaViola, 2012)

113

and SketchStory (Lee, Kazi, & Smith, 2013)) and commercially, with recent
products that augment predominantly touch interfaces with styluses meant
for sketching, as in the case of the Microsoft Surface or the Apple iPad Pro.
There have also been several research projects for creating full electronic
whiteboard systems, including Flatland (Mynatt, Igarashi, Edwards, &
LaMarca, 1999), Tivoli (Moran & Van Melle, 2000), ReBoard (Branham,
Golovchinsky, Carter, & Biehl, 2010), Range (Ju, Lee, & Klemmer, 2008),
and whiteboard systems for designers (Mangano, LaToza, Petre, & van der
Hoek, 2014). These are powerfully enhanced electronic versions of existing
analog media. In contrast, our aim is to create software environments —
particularly information visualizations — that do not necessarily emulate
existing analog environments, but that support visual thinking needs for
thinking about digital artifacts such as data.

To better understand these visual thinking needs, working primarily with the
goal of supporting everyday thinking processes in information visualizations,
we have observed analog sketching-based thinking practices from several
angles, including: examining the lifecycles of important sketches within
software development projects; analysing the visual constructs left behind as
residue on office whiteboards; and moving towards integration of sketching
practices with data by studying people’s sketched representations of a small
dataset. This has led to an expanded understanding of some of the facets of
visual thinking practices that could be integral as we move to design surface
interfaces that support visual thinking with data.

Understanding the Lifecycles of Sketches and Diagrams
To better understand the role of informal sketches and diagrams in everyday
workflows, we (Walny, Haber, Dörk, Sillito, & Carpendale, 2011b) ran a
qualitative, interview-based study of reiterated sketches; that is, sketches
that were created, re-created, and used at various stages of a project.
Cherubini et al. (Cherubini, Venolia, DeLine, & Ko, 2007) observed that
software developers use reiterated sketches in their workflows. We asked
software developers to describe in detail sketches that were important to a
recent project, and from these we deduced a number of rich, varied sketch
lifecycles that we viewed through the lens of transitions and social contexts.
In this section, we summarize the results of this study; full results can be
found in (Walny, Haber, Dörk, Sillito, & Carpendale, 2011b).

We interviewed eight academics who are actively involved in developing
software. They were a rich source of information about unconstrained
visual thinking because of the freedom they had in choosing when and
how to sketch. Unlike architects, engineers or, designers, who are generally
constrained to sketching physical artifacts, software developers tend to
work — and think — with non-physical, abstract concepts such as data
structures, algorithms, and user interfaces, all of which can be represented
in a multitude of ways. As academics, our participants were not part of strict
software development teams and therefore had relatively high freedom to
design their own preferred workflows.

114

Sketch Lifecycle Diagrams
Our interviews were semi-structured and began with the question, “tell
us about a sketch or diagram that was important to you in a software
development project.” Further questions focused on the context in which
sketches were drawn, their characteristics, the roles of the sketches, the
tools and techniques used to create the sketches, the reasons for each
stage of creating or re-creating the sketch, and personal experiences during
the creation of the sketches. We analyzed all of our transcribed video data
using an open-coding approach (Strauss & Corbin, 1998) and visualized the
results as individual sketch lifecycles, shown in Figure 1.

Time

P
e
rs

o
n

G
ro

u
p

brainsto
rm

draw

im
prove ideas print, categorize

draw

refine ideas

with templates
redraw

or rearrange

see in context project ends
for quick
reference

visible archive

ac
tio

n

m
ed

iu
mtra

ns
iti

on

re
as

on
 fo

r
tra

ns
iti

on

so
ci

al

co
nt

ex
t

Figure 1. Lifecycle diagrams demonstrate the lifecycle of a single reiterated sketch.
Each node represents an instance of the sketch; the icon represents the medium
on which that sketch was drawn. Node labels describe how a sketch instance was
created or used. Links between nodes represent a transition of each sketch — a

re-creation of or edit to the previous sketch. Link labels explain why each transition
occurred. The horizontal position of a node indicates the approximate time at
which it was created. The vertical position represents the social context of the
sketch instance: lower nodes were created in or for an individual setting, while

higher nodes were created to share with a group. ©IEEE. Reprinted and modified,
with permission, from (Walny, 2011b).

Our key insight was in the use of transitions as a lens to look at the lifecycles.
We identified the following transitions in our gathered sketch lifecycles:

Iteration

Discarding

Archival

Creation

Copying

Figure 2. We identified five main transitions that a
sketch would undergo: . ©IEEE. Reprinted, with per-
mission, from (Walny, 2011b).
• Creation is the transition from idea to an expression
of that idea in sketch form.
• Iteration refers to a change in the form of the
sketch, whether through redrawing, annotating, or
summarizing previous sketches.
• Copying transitions are direct reproductions of an
existing sketch, e.g. scanning or photographing.
• Archival transitions denote a change in status of the
sketch from active to inactive. Such a sketch is stored
but not actively accessed.
• Discarding transitions denote a (usually) deliberate
discarding of a sketch.

115

We also used social context as another lens to look at the lifecycles:

Personal: Sketches were often created and re-created for personal use.

Group sharing (informal): In some cases, sketches were created,
augmented, or re-created while sharing ideas informally with a
small group. This kind of sharing often involved annotations or small
augmentations to existing sketches, some of which had been created
in a personal setting.

Group sharing (formal): In other cases, sketches were used for
presentation to larger groups (some of which had a stake in the decision
making for some part of the project). These sketch instances were
usually quite polished. Such sketches were rarely changed or polished
after this formal sharing stage.

Lastly, we used symbols to encode the kinds of media on which each sketch
instance was created, as shown in :

Iteration

Discarding

Archival

Pile

Computer

Trash

Presentation

Thesis/
Paper

CameraNotebook

Sheet Whiteboard

Creation

Tablet Wall

Copying

Figure 3. Types of media on which sketches were created. ©IEEE. Reprinted, with
permission, from (Walny, 2011b).

Lifecycle Variations
Our participants can be grouped into three general categories according
to their level of investment in their sketching process. Participants with
thoroughly considered workflows deliberately sketched as a part of their
work process and put considerable effort into choosing the medium of their
sketches and the way in which they shared and archived them. Participants
with freeform workflows were heavy sketchers, but were more opportunistic
in terms of how and when they sketched how they organized their sketches
afterward. Participants with low sketching activity generally preferred
other alternatives to sketching and therefore did not put much effort into
managing their sketching workflow.

We describe here a selection of lifecycles from each type of participant;
full lifecycles are described in (Walny, Haber, Dörk, Sillito, & Carpendale,
2011b).

116

A Thoroughly Considered Lifecycle (P4)]

brainsto
rm

draw

Time

im
prove ideas

P
e
rs

o
n

G
ro

u
p

print, categorize

show

upload to wiki

archiveexplore ideas

draw

discard
digital version

exists

refine ideas

with templates
redraw

or rearrange

gr
ou

p
re

fe
re

nc
e

sh
are in

 m
eetin

g

make searchable

see in context
project ends

for quick
reference

visible archive

#4

P
e
rs

o
n

G
ro

u
p

explore ideas

draw

Time

show

refine redraw

summarize

show

pr
es

en
t p

la
n

future reference

archive

explore ideas

feedback
improve ideas

im
plicit save

#1

brainstorm,
plan

draw

Time

allow erase

G
ro

u
p

not enough

space

mutual agreement

upload to wiki

take photo

fo
r g

ro
up

re
fer

en
ce

#3

Figure 4. A sketch lifecycle from P4, who thoroughly considered his sketching
workflow. ©IEEE. Reprinted, with permission, from (Walny, 2011b).

Let us consider one participant with a thoroughly considered workflow, whom
we will call P4. This individual thought deeply about his workflow and was
very partial to paper, but was actively trying to digitize his workflow so that
he could take advantage of more streamlined transitions between iterations
of sketches and the potential of template reuse. Let us walk through the
lifecycle of a typical sketch that P4 would make, shown in Figure 4.

The first half of P4’s sketch lifecycle reveals that he would draw sketches
in meetings or on public transit, either on paper or on a pen-based tablet.
Paper sketches were particularly used for brainstorming, but would be
quickly redrawn on a tablet to improve the ideas, then discarded once a
digital version existed. The pen-based tablet was used to create sketches
that explored particular ideas; it contained pre-existing templates for rapid
idea iteration. These sketches would be redrawn or rearranged several
times in an iterative process of idea refinement.

The second part of P4’s sketch lifecycle shows the result of the carefully
planned workflow. The digital version of the sketch would be uploaded to a
wiki for group reference; shown on the tablet to share in a meeting setting;
and archived to make it searchable. In some cases, P4 felt he needed to
see the sketches in context of his work, so he might print and categorize
them, then pin them up in his workspace in a visible archive, to be explicitly
discarded once the relevant project would end.

A Freeform Lifecycle (P5)
Let us examine the lifecycle of a sketch from a participant, whom we call
P5, with a freeform workflow (Figure 5). This individual was a graphics
programmer and this particular sketch was used for debugging purposes.

P5 described to us a situation where she was debugging some graphics
code using a debugging environment, but it was not helping. She grabbed
the most readily available drawing surface — a piece of paper from a stack
of loose scrap paper on her desk — and began to sketch out her problem.
When this did not help, she decided she needed a change of environment
and walked to a communal whiteboard in her workspace to redraw the
same sketch. This helped her to discover a missing special case she had not

117

previously accounted for.

#5

debug

draw take photoredraw refine

remember formalize

write

publish

im
plem

ent

draw

Time

discard revisitarchive
no value

change environment

rememberfuture reference

P
e
rs

o
n

G
ro

u
p

debug

draw

Time

redraw

generalize

P
e
rs

o
n

G
ro

u
p

tuck into
future

reference
exp

lain w
ork

present

a) debugging

#6

explain concept
in meeting

draw

TimeP
e
rs

o
n

G
ro

u
p

useful for future sharing

take photo redraw keep on drive

implicit saverefine for sharing

erase
rough,

not valuable

b) explanation

#6

plan

draw

Time

annotate

future referencewith newer version
avoid clutter

feedback
redraw

sum
m

arize

im
prove

archive

a) network architecture

P
e
rs

o
n

G
ro

u
p #2

brainstorm

draw

Time

improve ideas
copy

archive

b) user interface

P
e
rs

o
n

G
ro

u
p

redraw

prepare for sharing

scan
share over distance

refer to

keep version
for self

annotate

fee
dbac

k
future reference,

refinement

#2

Figure 5. A sketch lifecycle from P5, who had a freeform sketching workflow.
©IEEE. Reprinted and modified, with permission, from (Walny, 2011b).

In the bottom branch of the lifecycle, we see that P5 returned to her desk
and created a sketch to plan out her implementation of the missing case.
She kept this sketch on her desk to revisit it as a memory aid and told us she
would discard it once it no longer held value as a memory aid.

Meanwhile, as can be seen in the top branch of the lifecycle, she also took
a photo of the original whiteboard drawing so that she could remember it,
re-create a more formal version of it digitally, and eventually publish it in a
paper.

P5’s lifecycle illustrates that, for some people, working in different
environments and on different media can be beneficial, and even crucial, to
a thinking process. The sketches that led to solving of problems or working
out implementations were clearly valuable to P5, as she saved them as both
a visible reminder and a basis for later formal documentation.

Low-Sketching Activity Lifecycle (P7)

debug

generate

Time

print archive
future reference

prepare for sharing

show annotate

feedback

remember

P
e
rs

o
n

G
ro

u
p #7

Time

P
e
rs

o
n

G
ro

u
p

discard
hates paper,

not searchable tex

archive

implicit save

future reference

publishpresent

increase consistency

brai
nsto

rm
,

think

second ideas

for saving redraw

redraw

ppt

draw

sh
ar

e/
pub

lis
h

pu
bl
ish

#8

Figure 6. Sketch lifecycle from a participant with low sketching activity (P7). ©IEEE.
Reprinted and modified, with permission, from (Walny, 2011b).

An example of a participant with low sketching activity was a researcher,
P7, who was working on optimizing network protocol parameters (Figure
6). Part of his work included automatically generating performance graphs
for debugging. In contrast to the other lifecycles we gathered, the creation
step here was done digitally, and the generated graphs were printed so that
they could be shared in meetings.

At these meetings, P7 would show the graphs to a supervisor, annotate
them throughout the discussion, then store each group of graphs, stapled,

118

in a pile on his desks. Although P7 had the ability to re-generate the graphs
at any point in time, he found himself referring back to the annotated graphs
because the annotations from the meetings were so valuable.

P7’s lifecycle illustrates the value of handwritten annotations even for some
with primarily digital workflows.

Overview of Transitions
We now summarize the characteristics of each transition among our
participants.

The creation transition generally happened when a participant had an idea
or problem and needed an external representation. This often happened
in a personal context, for brainstorming, ideation, planning, or debugging.
In several cases, creation was a rapid transition that used the most readily
available medium. Participants with thoroughly considered workflows
tended to ensure that their preferred medium was readily available.

The iteration transition was the most significant part of the lifecycles.
Sketches were iterated upon for idea generation and refinement, to receive
feedback, to preserve a record of meetings, or to beautify them for formal
presentation.

The copying transition was used primarily to support sharing a sketch with
others or to place the sketch in a place where it could act as a memory aid,
whether a consistently visible one in the workspace or an archived one to
be kept in case of future need.

The archiving transition was implicit for most of our participants; they
tended to avoid deliberately discarding sketches unless they were leading
to clutter, so sketches were archived by default. The clear exception here
was when participants deliberately made searchable, accessible archives of
their sketches for sharing with groups. Note that none of our participants
talked much about retrieving sketches from an archive; this seemed to be
a rare activity, but participants liked the security of having access to these
sketches.

The discarding transition was usually deliberate and tended to happen
most with analog sketches for reducing clutter. Sketches were discarded
when they lost their value to a participant, either because they represented
an idea that had since changed or because they were no longer needed as
a memory aid.

Other Highlights
Beautification. Our participants tended to talk about beautification only in
the context of sharing, and particularly formal sharing with wider groups.
Some participants were aware of the effect that “sketchiness” can have on
the amount of feedback people are willing to give —more formal sketches

119

tend to look more fi nished, and therefore inspire less feedback, as noted
by (Landay, 1996).

Sketches as contracts. One of our participants used sketches as contracts,
that is, records of agreement. He and a colleague would agree on a task
based on a sketch and upload it to a wiki. Later, if there was any dispute
over what the task had been, it was easy to check it on the wiki.

Summary sketches. Two of our participants created what we call summary
sketches (see Figure 7 for an example). These sketches marked an infl ection
point in a project. A series of previous sketches were used to explore an
idea. Once the researcher had settled on a particular idea, they would
draw a clean summary of the chosen idea that, in their minds, marked a
decision point and replaced many of the previous sketches. In the case
of our participants, these were the sketches that they chose as having
been important to a recent project. Some of the preceding sketches were
now deemed less valuable, and therefore more likely to be deliberately
discarded.

Figure 7. Example of a summary sketch.

Strong opinions about paper. Some of our participants had strong opinions
about paper. Participants with thoroughly considered workfl ows tended
to be very fond of drawing on paper due to its easy accessibility and its
particular qualities, but some of these participants found the advantages of
digital media to be strong enough that they pursued fully digital or mixed
digital and paper workfl ows. Participants with freeform workfl ows tended
to be fond of paper. Participants with low sketching activity were vocal
about their dislike of paper because of the clutter it created and its lack of
searchability.

Discussion
Among our participants, it was clear that sketches were highly used for
ideation, communication, and distillation. While some ideation sketches
were only transient, those that had rich lifecycles were clearly valued as part
of participants’ workfl ows, going through multiple transitions across media
and contexts, serving as a record of thought, a trigger for new thoughts,
and a memory aid, and there was a clear reluctance to discard them. In

120

addition, analog media were clearly dominant amongst our participants
when it came to creating ideation sketches.

Sketch lifecycles were also shaped by participants’ communication needs.
Sketches were used to share ideas; redrawn to communicate and clarify
work; and were used to record agreements about decisions made during
work processes. For formal communication, sketches were transformed
to different media and beautifi ed, but original hand-drawn sketches were
often saved for personal use.

Sketches were also used for distillation. Most transitions in the lifecycles
that did not result in exact copies were for refi ning ideas, clarifying solutions
to problems, and for discussing ideas with others.

Summary
The study of sketch lifecycles contributes a fuller understanding of the
richness and variation in the process of creating sketches for everyday
thinking tasks and of the signifi cance of transitions within this process. It
is clear that for some people, these visuals are important cognitive tools
throughout their workfl ows. It is also clear that it currently takes a great deal
of setup effort to use purely digital media for this type of activity, particularly
for heavy sketchers; and that this is not without its limitations, particularly
where sketches are used as a memory aid within the workspace. Despite this,
there are advantages to integrating visual thinking into digital workfl ows,
judging by some of our participants’ willingness to do so. This highlights
the importance of considering the overall work context and people’s various
visual thinking and communication needs when designing digital tools.

Understanding Sketched Visual Constructs on Whiteboards

Figure 8. A whiteboard diagram for thinking; collected in our study. ©IEEE.
Reprinted and modifi ed, with permission, from (Walny, 2011b).

A key facet of visual thinking encompasses the visual constructs that

121

are created and left as residue of visual thinking. There is a whole class
of these visualizations created everyday all around us — spontaneous
visualizations, or diagrams sketched to illustrate abstract concepts or data
while thinking or collaborating. These are usually drawn on freeform media
such as paper or whiteboards. Their residue can be studied to gain a better
understanding of the kinds of ways in which information visualizations could
support visual thinking. To this end, we gathered photographs of unaltered
offi ce whiteboards and studied the visual constructs on these whiteboards
qualitatively, using information visualization as a lens through which to
understand these spontaneous visualizations. The full results of this study,
which was done in collaboration with Microsoft Research, are available in
(Walny, Carpendale, Riche, Venolia, & Fawcett, 2011a).

Study Design & Analysis
The focus of the study was to better understand the kinds of visual
constructs people create and use in their daily routines. This includes better
understanding of:

• The types of visuals that people create.

• Whether people develop their own visual representations.

• The techniques that people use to arrange their visuals.

• Whether any of these techniques parallel established information
visualization techniques.

Our goal was to observe a breadth of constructs. We took photos of 82
analog whiteboards from 69 participants over the course of a few days
(Please note: We are unable to provide high-quality images in this section.
However, the key aspect of these images is their structure, not their textual
content). We used a “moment-in-time” approach, wherein we visited offi ces
unannounced and took photos of unaltered whiteboards.

Our participants were mostly researchers in a range of disciplines including
computer graphics, mathematics, linguistics, and theoretical computer
science. There were also a small number of software engineers, designers,
managers, administrators, and technical support staff.

Figure 9. We observed a breadth of visual constructs.

We used an open coding approach (Strauss & Corbin, 1998) to analyze the

122

photos for information visualization constructs. All fi ve of the paper authors
(see (Walny, Carpendale, Riche, Venolia, & Fawcett, 2011a)) were involved
in the coding process, and together we made two full passes on the data,
counting the number of whiteboards that contained various constructs
or factors. We then conducted 10 follow-up interviews with some of our
participants to validate the accuracy of our coding and to learn about their
whiteboard usage in more depth. We transcribed these interviews and used
affi nity diagramming to extract their major themes.

Findings
We found a large variety of different diagrams drawn on these whiteboards,
used as visual representations of problems, ideas, thoughts, and work
processes. They were hugely inventive and clearly meaningful to participants.
Our fi ndings fall under three major themes: the relationship between words
and diagrammatic constructs, use of recognizable information visualizations,
and the use of whiteboards as a medium.

Findings I: The Relationship between Words and Diagrammatic Constructs

Words in
sentences and

paragraphs

Words in lists Words in
freeform spatial
organizations

Words in
diagrammatic

constructs

Words in visual
constructions

Mixed words
and diagrams

Diagrams with
labels

Pure diagrams
(a) (b) (c) (d) (e) (f) (g) (h)

Figure 10. The words-to-diagrams spectrum. ©IEEE.
Reproduced, with permission, from (Walny, 2011a).

Our open coding process led us to the observation that visual constructs
contain both words and diagrammatic elements in a variety of relationships
to each other. We place these on a spectrum that we call the words-to-
diagrams spectrum, shown in Figure 10. At one end of the spectrum lie
constructs with pure text; at the other, constructs with purely diagrammatic
constructs. In between these two extremes lie various confi gurations of
words and diagrammatic constructs, suggesting that words do not always
play the role of labels or text. Rather, they can be essential parts of the
structure of diagrams, and their own spatial confi guration can have meaning.

(a) (b) (c)
Figure 11. Examples from the word-dominant side of the words-to-diagrams

spectrum. ©IEEE. Reprinted and modifi ed, with permission, from (Walny, 2011a).

123

Let us examine the words-to-diagrams spectrum in more detail. On the left
of the spectrum, shown in Figure 11, are primarily word-based constructs.
Pure text in sentences or paragraphs is shown in (a), followed by a structured
spatial organization of words into lists (b). Next, words become organized
in more freeform spatial organizations, often using techniques such as
orientation or layering.

In the middle of the spectrum, shown in Figure 12, lie different varieties of
mixed words and diagrams. In (d), words create a spatial structure and are
linked by diagrammatic elements. Next, in (e), words are arranged in more
familiar diagrammatic constructs, such as trees. And in (f), diagrammatic
constructs are more prominent, but words are still structurally integral.

(d) (e) (f)
Figure 12. Examples from the middle section of the words-to-diagrams spectrum.

©IEEE. Reprinted and modifi ed, with permission, from (Walny, 2011a).

Lastly, on the far right of the spectrum, shown in Figure 13, are diagrams
where words play a labeling role rather than a structural role, or are not
present at all. Most of these diagrams that we collected were sketches of
data charts or geometric sketches.

(g) (h)

Figure 13. Examples from the diagram-dominant
side of the words-to-diagrams spectrum. ©IEEE.
Reprinted and modifi ed, with permission, from
(Walny, 2011a).

Along the majority of this spectrum, words are being used as primary
objects, not as simple labels. It is clear that words play an important role in
visual thinking. Some of our interviewees indicated that they saw a clear link
between words and maturity of thought, and suggested that if a thought
could be represented in words, it was more developed. Some claimed that
drawing a diagram with words was easier than writing because it is easier
to use spatial organization and diagrammatic constructs than to search for
the correct wording. In addition, words can be used to represent abstract
entities that don’t have obvious visual representations. For instance, one
interviewee stated:

“I wanted to come up with my own theoretical framework about
cognitive resources, so I was just like basically trying to relate them
all. Because I couldn’t do that [in a word processor]. I could create

124

the links, but I couldn’t have kind of like a mental picture in my mind
of how they relate.”

Selected Implications
The observation of the words-to-diagrams spectrum suggests several
areas of exploration that may be of interest to the information visualization
community:

• Explore visualizations in which words are treated as primary to the
representation. This could be useful for visualizing abstract concepts.

• Explore the idea of transitioning from visual data representations
to words once an analyst has made a connection between data and
concept. For example, a person might use such a tool to move from
a data representation, to summarization in words, to manipulating the
relationships between these words.

Findings II: Use of Recognizable Information Visualization
Using information visualization as a lens onto our collected data, we also
focused on fi nding recognizable information visualization factors and
constructs in the collected visual thinking residue.

Figure 14. Collected examples of a data chart, a node-link drawing, a focus-plus-
context technique, emphasis, and layering. ©IEEE. Reprinted, with permission,

from (Walny, 2011a).

We found many examples of these, including data charts, node-link
drawings, focus and context techniques, emphasis, and layering information
(see Figure 14 for examples). For this chapter, discuss two in depth: data
charts and layering. Further details about the remaining types can be found
in (Walny, Carpendale, Riche, Venolia, & Fawcett, 2011a).

Data Charts
Data charts such as line graphs, scatterplots, and bar charts appeared in
30% of our collected whiteboards.

Figure 15. Example of a line graph, a scatterplot, and bar charts collected during
our study. ©IEEE. Reprinted, with permission, from (Walny, 2011a).

125

These charts rarely contained data with actual numbers, though there
was evidence of underlying data, such as trend lines or data bars. Our
interviewees suggested several possible reasons for this:

• They could not remember the data while drawing it.

• It would take too long to draw the data.

• The gist or trend was suffi cient for the purpose of the conversation
or brainstorming. As one participant put it: “We didn’t re-plot anything
to draw this, we’re just kind of saying, here’s the pattern”

This suggests that, in this case, the whiteboard was used either at the early
stage of data analysis, or at a later, communicative stage.

Notably, one of our participants was somewhat disturbed by this lack of
data, saying that, for his work, “any small amount of data is going to be
suggestive and possibly be completely misleading”.

Layering
There was ample evidence of an interplay between current and historical
usage in the form of palimpsests (43%) — traces of old diagrams visible
under new ones — and erasing (44%) (see Figure 16). This suggests that
people are comfortable reading through layers of information, particularly
if they have personally created these layers. It also suggests that people
fi nd value to preserving this historical information. During our interviews,
participants confi rmed that they use this layering as a way to manage
temporal information. For example, one participant used different colours
each time he started a new session of writing at the whiteboard. He said:

“I choose different colors deliberately. If I use all the same colors,
I don’t know what my latest thinking was.”

Figure 16. Examples of palimpsests (left) and erasing (right), demonstrating an
interplay between current and historical whiteboard usage. ©IEEE. Reprinted, with

permission, from (Walny, 2011a).

Selected Implications
Whiteboards have some characteristics that would be powerful for
data exploration: they make it easy to collaborate and to make rapid
modifi cations to the display. However, they are tedious for performing real

126

data exploration because, of course, they are not connected to real data.
Given that data charts do show up as a part of visual thinking on analog
whiteboards, one research direction that emerges from these observations
is to explore an augmented whiteboard design that supports access to data
while still maintaining the thought-supporting freedoms of the whiteboard.
One stream of research has already followed up on this by integrating
access to data with a sketch-based interface: (Browne, Lee, Carpendale,
Riche, & Sherwood, 2011) et al’s pen-based interface, followed by (Walny,
Lee, Johns, & Riche, 2012)’s wizard of oz study of a freeform pen-and-touch
interface for data exploration, which culminated in Lee et al’s SketchInsight
(Lee, Smith, Riche, & Karlson, 2015) and SketchStory (Lee et al., 2013).

Another potential stream of research is to consider the usefulness of
layering as a presentation technique. The concept of layering has appeared
in other systems, e.g. Magic Lenses (Bier, Stone, Pier, Buxton, & DeRose,
1993), but in these cases, new layers hide existing layers to reduce clutter.
However, since layers seem to serve as history and collaboration awareness
tools, and since people seem to have a certain level of tolerance for the
clutter of layers they have created on their own, it would be interesting to
investigate how to enable our tools to help people build these multiple
layers of information.

Findings III: Whiteboards as a Medium
During the course of our analysis, several observations stood out as being
characteristic to the medium of whiteboards. There is a considerable body of
work that has expanded our understanding of the medium of whiteboards,
including the work of (Mynatt, 1999), (Branham et al., 2010) , and (Tang,
Lanir, Greenberg, & Fels, 2009). Our fi ndings confi rm and add to this body
of work from an information visualization vantage point.

Figure 17. An example of deliberate
sketchiness. ©IEEE. Reprinted, with
permission, from (Walny, 2011a).

Immediacy
Our interviewees made it clear that one of the defi ning characteristics of
whiteboards was their immediacy — they could be used instantly, without
interrupting a thought or a conversation. This immediacy was important
enough that participants were willing to give up color choice, tidiness, real
data, and precision in order to rapidly externalize their thoughts.

127

One interviewee remarked that explaining a concept to someone doesn’t
require precision. Such precision can be had with a mathematical graph
drawing program, but it takes time (about 20 minutes, in his case) that he
prefers not to spend in a meeting setting. This results in him avoiding that
level of precision in typical meetings entirely. This indicates a potential
missed opportunity for discussing precise details in collaborative settings.

Sketchiness and Forgiveness
Two other key characteristics of whiteboards were sketchiness and
forgiveness. While most marks made on the whiteboards were sketchy in
nature, some were clearly deliberately so (see Figure 17). For example,
several of our interviewees claimed that as their thoughts clarifi ed, they
tended to redraw their drawings in a neater, less sketchy fashion (see Figure
19).

Whiteboards also have a very forgiving nature. Our participants did not feel
pressured to “get it right” the fi rst time — they could easily be imprecise
or even mistaken while using a whiteboard, whereas they felt much more
pressured to be perfect while using software (see Figure 18).

Figure 18. Whiteboards
allow mistakes.

Figure 19. Sketchiness could
indicate the maturity of a line of
thought. ©IEEE. Reprinted, with
permission, from (Walny, 2011a).

Messiness
Nearly half of the whiteboards we photographed were densely packed with
information. Some of these were arranged relatively neatly, using various
separations and groupings to keep diagrams in order. However, many
were very messy, particularly those used for communication rather than
organizing one’s own thoughts.

One interviewee commented that his whiteboard drawing may look “messy”
to others, but he actually found that a digital copy of that same whiteboard
was much messier to him:

“[Diagramming software] for me is a lot messier than this board.
For me to replicate this, software doesn’t give me enough

128

constructs. Kind of messes up my thought process. You start using
artificial shapes and places just to fit it in with the software. Over
here [whiteboard], I can do a lot more thinking. And this is a lot
less stressful.”

Selected Implications
The whiteboard medium has several characteristics that are very unlike
those found in software, characteristics that were clearly highly valued
by some of our participants. It is important to consider the tradeoffs of
introducing software-based solutions intended to replace whiteboards. For
instance, while augmented whiteboards may be powerful tools, our data
indicates that people may not be eager to use them in place of an analog
whiteboard unless there is enough immediacy. Additionally, while much
work on information presentation is focused on clutter reduction, our study
indicates that some people are able to work with cluttered representations,
particularly if they have constructed them by themselves over time. In fact,
there is some indication that reducing clutter can inadvertently remove the
ability to imbue a representation with implied meaning, for example about
contextual and temporal information.

Summary
Our qualitative study of spontaneous visualizations on office whiteboards has
made it clear to us that people have the capability to create inventive, spur-
of-the-moment visual representations of their problems to help themselves
think. Moreover, examining these representations reveals that the ways in
which people think visually do not always align with the ways in which visual
constructs are made available in software. By decomposing the relationship
of words to diagrammatic constructs, we have seen that words are often
used as primary, rather than supporting, objects in these visuals. Viewing the
visual constructs from the perspective of information visualization revealed
that discussions of data are taking place at whiteboards, with immediacy
being valued over data accuracy, even where more accurate tools were
available. We have also seen that there are cases where there is value in
clutter and sketchiness, in using a medium that allows for freedom to make
mistakes, and in a medium through which a rich variety of visual constructs
can be created to support thought. This understanding leads to a variety of
open research questions regarding the ways in which software environments
could support this kind of thinking freedom. This is particularly relevant for
software on interactive surfaces, which are the natural digital equivalent to
the ubiquitous whiteboards.

Sketching Representations of Data
Having explored when and why visual thinking sketches are created as well
as the characteristics of visual thinking constructs, we initiated explorations
into how data representations would look when sketched by novices. We
performed an exploratory observational study in which we asked people
with varying amounts of experience in visualization to visually represent a
small dataset using just paper and coloured pencils, and to tell us what they

129

learned about the data. This study broadened our perspective of the scope
of possible data representations. Full results were presented at the EuroVis
2015 conference (Walny, Huron, & Carpendale, 2015).

Sketching data is a normal practice in our lab and in the classes we teach,
as a way of both exploring new representations and of understanding the
data we are working with. Our goal was to better understand the impact of
sketching on data representation and understanding. Sketching has several
benefits over digital tools for this kind of scenario: it has an extremely low
barrier to entry, meaning that complete novices can do it, even if they do
not think highly of their drawing abilities; it is quite rapid, meaning that it
can be done within the timespan of a normal study; and it is completely
freeform, meaning there are no restrictions on the representation beyond
the dimensions of the page. This last characteristic is very important, because
the lack of constraints meant we could minimize — though not eliminate —
imposing pre-existing notions of how a representation “should” look.

Study Description
Our study setup was quite straightforward. We ran three one-hour-
long sessions with 7, 8, and 7 participants each, for a total of 22 unique
participants. Participants were given coloured pencils, a printout of the
dataset, and as many pieces of blank, letter-size paper as they wanted. We
then asked them to “represent the data on the blank sheets of paper” in
“any way [they] wished”. To minimize biasing our participants or suggesting
representation types, we carefully scripted the introduction to each session
and pre-planned answers to anticipated questions. After participants were
done sketching, or after 45 minutes, we administered a simple demographic
questionnaire that also included the following question with approximately
half a page of room to answer: “Please describe what you learned or
found interesting about this data during the session. (There are no wrong
answers)”.

The dataset that participants sketched is a set of behavior-situation
appropriateness scores, shown in Figure 20. We were very careful in choosing
this dataset, as we wanted it to be very accessible but still interesting to a
wide range of people. This is an engaging dataset, with combinations such
as sleeping at a job interview, which was rated as quite inappropriate at
0.75 or eating on a date, which rated quite highly overall at 7.79. The key
advantage of this dataset is that we can consider all of our participants to
be “experts” in this data — not from a social psychology perspective, but
from a human perspective.

We encourage readers to try sketching a portion of this dataset themselves.
All experimental materials for the study, including the entire dataset, are
available on our supplementary material website at http://innovis.cpsc.
ucalgary.ca/supplemental/Data-Sketching/.

130

Run Talk Kiss Write Eat Sleep Mumble Read Fight Belch Argue Jump Cry Laugh Shout

Class 2.52 6.21 2.10 8.17 4.23 3.60 3.62 7.27 1.21 1.77 5.33 1.79 2.21 6.23 1.94

Date 5.00 8.56 8.73 3.62 7.79 3.77 3.12 2.88 3.58 2.23 4.50 4.42 3.04 8.00 3.79

Bus 1.44 8.08 4.27 4.87 5.48 7.04 5.17 7.17 1.52 2.15 4.17 3.12 3.08 7.10 3.00

Family dinner 2.56 8.52 4.92 2.58 8.44 2.29 2.54 3.96 1.67 2.50 3.25 2.29 3.21 7.13 1.96

Park 7.94 8.42 7.71 7.00 8.13 5.63 5.40 7.77 3.06 5.00 5.06 7.42 5.21 8.10 6.92

Church 1.38 3.29 2.38 2.85 1.38 1.77 3.52 3.58 0.62 1.42 1.92 1.71 3.13 2.60 1.33

Job interview 1.94 8.46 1.08 4.85 1.73 0.75 1.31 2.48 1.04 1.21 1.83 1.48 1.37 5.88 1.65

Sidewalk 5.58 8.19 4.75 3.38 4.83 1.46 4.96 4.81 1.46 2.81 4.08 3.54 3.71 7.40 4.88

Movies 2.46 4.98 6.21 2.73 7.48 4.08 4.13 1.73 1.37 2.58 1.71 2.31 7.15 7.94 2.42

Bar 1.96 8.25 5.17 5.38 7.67 2.90 6.21 4.71 1.90 5.04 4.31 3.75 3.44 8.23 4.13

Elevator 1.63 7.40 4.79 3.04 5.10 1.31 5.12 4.48 1.58 2.54 2.58 2.12 3.48 6.77 1.73

Restroom 2.83 7.25 2.81 3.46 2.35 2.83 5.04 4.75 1.77 5.12 3.48 3.65 4.79 5.90 3.52

Own room 6.15 8.58 8.52 8.29 7.94 8.85 7.67 8.58 4.25 6.81 7.52 6.73 8.00 8.17 6.44

Dorm lounge 4.40 7.88 6.54 7.73 7.19 6.08 5.50 8.56 2.40 4.00 4.88 4.58 3.88 7.75 3.60

Football game 4.12 8.08 5.08 4.56 8.04 2.98 5.23 3.69 2.04 3.85 4.98 7.12 4.31 7.90 7.94

Source:

Price, R.H. and Bouffard, D.L.

Behavioral Appropriateness and Situational Constraint as Dimensions of Social Behavior

Journal of Personality and Social Psychology

9 = "The behavior is extremely appropriate in this situation."

Behavior
Situation

Mean Appropriateness Ratings for 225 Behavior-Situation Combinations

Note:
0 = "The behavior is extremely inappropriate in this situation."

Figure 20. We used on a dataset from a 1974 social psychology study in which
researchers asked people to rate the appropriateness of particular behaviours
- such as running, talking, or eating — in various situations — such as at a job

interview, in your own room, in the park, or in church (Price and Bouffard, 1974).
The dataset shows mean results from the study.

Results: Numeracy to Abstractness
Regardless of sketching ability or visualization expertise, all of our
participants were able to produce at least one sketch. We collected 35
representations in total from the 22 participants, as well as their datasets and
their questionnaires. Our aim was to broaden our perspective on the space
of visual representations of data, so our analysis approach was designed to
help us view the representations we received in a new way. To analyze the
sketched representations, we used a combination of careful examination,
affi nity diagramming, several coding passes, and fi nally working together
until agreement was reached.

Figure 21. Types of sketched representations that we collected, arranged on
a continuum from numeracy to abstractness. Square tokens indicate number
of collected representations of each type. © 2015 The Author(s), Computer

Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.
Reprinted, with permission, from (Walny, 2015).

After this process, the strongest characteristic that stood out for us in looking
at the representations was the variations in how numeric they were. We
called a representation numeric if it represented directly the raw data values
in the dataset. We called a representation abstract if it represented some
level of abstraction of the original raw data. Representations are binned
roughly by type as shown in Figure 21; tokens above each bin represent the

131

number of representations we collected of each type. See Figures 22 – 27
for examples of selected representations.

Figure 22. Countable representations: a tally and countable dots; A dot plot,
in which both the position and size of the points encodes the numerical value
and the colour of the background bins the values into high, medium and low

appropriateness; A matrix that is a fairly straightforward mapping of the original
raw data to size of the shape. (3rd image from left © 2015 The Author(s),

Computer Graphics Forum © 2015 The Eurographics Association and John Wiley
& Sons Ltd. Reprinted, with permission, from (Walny, 2015)).

Figure 23. Examples of bar charts and line charts, including radial charts. These are
still quite numeric, but can have various groupings or aggregations applied to the

raw values.

Figure 24. Ranked lists abstract numeric data into an ordering.

Figure 25. These graphs, which bin and link values in various ways, demonstrate
representations on the abstract side of the continuum; A Venn diagram relates

different situations to each other; In the hybrid Venn diagram / bar chart, external
information is included. The orange area represents physically active behaviours

and the blue represents less physically active behaviours. (Top images © 2015 The
Author(s), Computer Graphics Forum © 2015 The Eurographics Association and

John Wiley & Sons Ltd. Reprinted, with permission, from (Walny, 2015)).

132

At the most abstract end of the spectrum, we have pictorial representations,
shown in Figures 26 and 27. It is easy to disregard these at fi rst glance
because they prominently feature cartoons and very little actual data.
However, these proved to be more interesting than they seemed, as
demonstrated in the later integration of results.

Figure 26. Examples of pictorial representations. A pictorial decision support tool
depicts a “day in the life” of a person and uses the data to guide decision making
on appropriate behaviours in particular situations; A set of cartoons summarizes

the dataset with “YES” and “NO” statements; Another set of cartoons summarizes
several situations and behaviours. (Left image © 2015 The Author(s), Computer

Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.
Reprinted, with permission, from (Walny, 2015)).

Figure 27. A set of pictorial vignettes showing an overview of selected situations
and behaviours.

Results: Spectrum of Data Reports
Independently of the data sketches, we analyzed the questionnaire
responses to the open question: “Please describe what you learned or
found interesting about this data during the session (there are no wrong
answers)”. We divided each response into individual statements, then used
open coding to analyse them. This led us to a classifi cation we call the
“spectrum of data reports”, which we label from A – F and describe as
follows:

133

A – C: Statements communicating information intrinsic to the dataset.
A. On the left side of the spectrum we have statements about individual
data values, such as, “fighting in church is inappropriate”.

B. Next, there are statements that summarize entire rows or columns, such
as, “there aren’t many behaviours appropriate in church”.

C. These statements contain comparisons between two rows or columns,
such as “Date and own room have the similar rating for ‘kiss’. Other ratings
in these two situations are close to each other.”

D: Statements containing dataset-level trends and comparisons.
Statements in this category:

• Compare three or more rows or columns,

• Group items by value, or

• Make global comparisons.

For instance: “Several situations which have a similar rate for one specific
behavior tend to be similar for other behaviors”; and, referring to values as:
“completely appropriate”, “somewhat appropriate”, “highly inappropriate”.

E: Including Extrinsic Information
Some statements included information extrinsic to the dataset. For
example, some people would classify values using external concepts such
as “comfortable”, “safe”, or “aggressive”. Others compared the values to
their own expectations, for example, “mumbling + talking diverged more
than expected.” And others would explain the values within the domain
context, for instance, “people care a lot in job interviews.”

F: Analytic Potential
Lastly, there were some statements that indicated hypotheses or conjectures
about the reasons behind the values in the dataset. Because this was a half-
page open question, we were not expecting a full analysis. However, we still
received a few statements that indicated analytic potential. For instance,
one participant thought that the park and your own room might have similar
values due to their relative anonymity: “it appears the park might be the
same as one’s own room... anonymity?“.

Another participant hypothesized that there were more women than men
in the original study because the acceptability of talking in bathrooms was,
in his opinion, rated quite highly: “I found out that there seem to be more
women in the dataset than men because most inappropriate behaviours to
men (i.e. Talking in the restroom) is still above 5.”

Integration of Results
We integrate the two independent analyses together to see a more
holistic perspective on each participant. We summarized this in a graphic
shown in Figure 29. In this graphic, every row represents all of the artifacts

134

returned by a single participant. Consider the single row shown in Figure
28, which shows the participant’s reported visualization experience level,
the types of statements the participant reported, and the classifi cation of
the two sketches this participant created (both are classifi ed G for graph;
classifi cations match the highlighted letters in Figure 21).

Figure 28. Integration of results for one participant. The fi rst column shows their
self-reported visualization experience rating, which is medium. (Darker colours
indicate more experience.) The green columns show the kinds of statements

this participant reported in their questionnaire, corresponding to the data report
spectrum. This participant had statements in the A, B, and C categories, which

were statements about raw data values and comparisons between values — and
also statements in the F category, with analytic potential. The red columns show

the kinds of sketches this participant returned. This participant returned two
sketches, both graphs (as denoted by ‘G’; see highlighted letters in Figure 27 for
a legend). The saturation of the red colour indicates that these were positioned

closer to the abstract side of the spectrum.

The full integrated results for all participants are shown in Figure 29, which
orders participants based on type of representation returned, from most
abstract to most numeric (where multiple types of representations were
submitted, the ordering uses the most abstract representation). The fi rst
column shows that there was a range of visualization experience among
participants. In the green data report columns, it can be seen that most
participants returned some statements in the left-most columns — A, B, and
C — and much fewer returned statements referencing extrinsic information
(E) or statements with analytic potential (F). The rightmost red columns
show that most people returned only one sketch, although a few created
several sketches.

In Figure 29, we condense the sketch columns to get a single column with
the most abstract sketch from each person. We have ordered the whole
graphic top to bottom from most abstract to most numeric.

If you look at the top part of this matrix, you can see that where we have the
highest concentration of abstract sketches — particularly the pictorial ones
— we also have a concentration of the statements about extrinsic information
and statements with analytic potential. This means that the participants who
created the cartoon storytelling images seen in Figures 26 - 27 — images
least similar to standard visualizations — actually demonstrated deeper
levels of thought about the data and how it fi ts within the context of the
world.

135

Figure 29. Full integrated results for all participants, ordered by representation
type, from most abstract to most numeric. See Figure 28 for explanation of how to

read each row.

In Figure 29, we condense the sketch columns to get a single column with
the most abstract sketch from each person. We have ordered the whole
graphic top to bottom from most abstract to most numeric.

If you look at the top part of this matrix, you can see that where we have the
highest concentration of abstract sketches — particularly the pictorial ones
— we also have a concentration of the statements about extrinsic information
and statements with analytic potential. This means that the participants who
created the cartoon storytelling images seen in Figures 26 - 27 — images
least similar to standard visualizations — actually demonstrated deeper
levels of thought about the data and how it fi ts within the context of the
world.

Of course, we cannot make any conclusive claims from this observation, but
we include it here because it inspired us to see the abstract representations

136

in a completely new light. We cannot know if some participants were more
creative than others, affecting both their sketches and their thinking about
the dataset; if they took steps to analyze the data before they represented
it; or if the act of sketching happened to have an infl uence on their
thinking. However, because the end goal of the information visualization
community is to understand data and not just represent it, and because the
representations associated with deeper thought about the data were so
different from standard visualizations, it is worth studying this association
further.

Levels of Data Description
The association found in the integration of results leads us to a more formal
way of describing the information content of a representation. We call these
the levels of data description, and they can describe representations of
varying numeracy or abstractness. This was inspired by Bertin’s elementary,
intermediate, and overall levels of information (Bertin, 1981), but is based
on our more complex dataset and the results of our data report spectrum.

What follows is an intuitive explanation of the levels of data description. A
formal defi nition can be found in the full paper (Walny et al., 2015).

We begin with a dataset (represented in Figure 30 by the empty table), the
world external to the dataset (represented by the globe icon), and the data
report spectrum (represented by the green bar with letters A – F).

Figure 30. Basic components underlying the levels of data description: the data
report spectrum (top), a dataset, and the external world.

Value Level of Data Description
Representations that describe the value level of a dataset communicate
the individual raw values, pairwise comparisons, and trends of 3 or more
individual values from the original dataset. Generally, such representations
would fall at the numeric end of the numeracy-to-abstractness continuum.
For example, the countable matrix shown in Figure 31 shows only the raw
values.

137

Figure 31. Value level of data description (left) with an example from our collected
sketches: a countable matrix.

Dimension Level of Data Description
Representations that show the dimension level of a dataset communicate
summary descriptions of individual dimensions or groups of dimensions, pairs
of individual dimensions or groups of dimensions, and dimensional trends.
The example shown in Figure 32 summarizes the average appropriateness
values for each situation. On the left, “own room” has, overall, pretty high
appropriateness ratings overall and, on the right, “church” has pretty low
appropriateness ratings overall.

Figure 32. Dimension level of data description (left) with example from our

collected sketches, which shows average values for each dimension.

Representations that show the dimension level of a dataset communicate
summary descriptions of individual dimensions or groups of dimensions, pairs
of individual dimensions or groups of dimensions, and dimensional trends.
The example shown in Figure 32 summarizes the average appropriateness
values for each situation. On the left, “own room” has, overall, pretty high
appropriateness ratings overall and, on the right, “church” has pretty low
appropriateness ratings overall.

Global Level of Data Description
Representations that describe the global level of a dataset meaning they
give an overview of the shape of the entire dataset. It is diffi cult to provide
such a global overview in 45 minutes of sketching, so we did not receive
many examples of this kind of sketch. However, the example shown in Figure
33 comes quite close: it provides an approximate overview of the value
distribution of each row and column in the dataset, all at once. Another

138

example might be a matrix representation of the data that is clustered by
similarity, giving a feel for the overall shape of the data.

Figure 33. Global level of data description (left) with example providing an

overview of the distribution of values of each row and column in the dataset.

External Level of Data Description
Lastly, representations that convey the external information level of data
description relate any of the previous levels to external concepts. For
example, the representation in Figure 34 orders situations — on the left —
by level of privacy, and it groups the bars —the behaviours — by type, i.e.
active, emotional, usually frowned upon, or negative.

Figure 34. External level of data description (left) with example representation that
classifi es and orders data based on information not contained in the dataset. (Left
image © 2015 The Author(s), Computer Graphics Forum © 2015 The Eurographics
Association and John Wiley & Sons Ltd. Reprinted, with permission, from (Walny,

2015)).

Discussion & Conclusion
From this exploration, some of the most interesting contributions are open
questions for further study. Some highlights include:

1. It is worth investigating the potential usefulness of viewing
representations in terms of their levels of data description. While
a representation might not include a particular level, it might have

139

validity — and utility — at another level.

2. We also think it is worth investigating the sketching process itself
in terms of data understanding. This was highlighted in particular by
those participants who made abstract and pictorial sketches and also
provided insightful data reports. Given the correspondence here with
data understanding, this relationship merits further study, regardless
of whether it has to do with process, pre-existing skill, or some other
factors.

We have presented a continuum of representations, from numeric to
abstract, a spectrum of data reports ranging from statements about
individual data values to statements with analytic potential, and four levels
of data description, from value-level through to external-level. What we have
seen is that there is more to representation than direct transcription of data.
Data has meaning within a context, and that meaning can be represented
together with the data. This may even have some relationship to insight
generation. Therefore, it is worth investigating the benefits of representing
data at various levels of data description in both numeric and abstract ways.

Conclusion
We have studied the lifecycles of sketches, the visual constructs in visual
thinking, and how data is represented given the freedom of sketching. These
studies have expanded our understanding of the valued characteristics of
sketching for visual thinking, including: the large variety of workflows that
sketches fit into; the structural importance of words; the layers of meaning
that can be present within a freeform sketch, and the correspondingly
restrictive nature of rigid software-based visual constructs; and the levels
of information that a data sketch can contain beyond the precise raw
values of a dataset. This expanded understanding will provide guidance for
designing new surface interfaces for thinking visually with and about digital
information.

Acknowledgements
The co-authors of the full papers summarized here include Jonathan
Haber, Marian Dörk, and Jonathan Sillito from the University of Calgary,
and Nathalie Henry Riche, Gina Venolia, and Philip Fawcett from Microsoft
Research. In addition to the generous support of SurfNet, this research was
partially funded by NSERC, AITF, GRAND, and SMART Technologies.

140

Designing Tabletop and Surface Applications Using
Interactive Prototypes

Tulio de Souza Alcantara and Frank Maurer

Introduction
“We must design our technologies for the way people actually
behave, not the way we would like them to behave” (Norman,
2007).

Designing Windows, Icons, Menus and Pointers (WIMP) based applications
is a well-known challenge. This challenge becomes even bigger for
touch-based devices and gesture-based applications (Hesselmann, Boll,
& Heuten, 2011), (Hinrichs & Carpendale, 2011), (Wobbrock, Morris, &
Wilson, 2009), (Lao, Heng, Zhang, Ling, & Wang, 2009), (North et al., 2009)
and (Morris, Wobbrock, & Wilson, 2010). The increasing popularity of multi-
touch tabletops and surface computing opens up new possibilities for
interaction paradigms, allowing designers to create applications that can
be interacted with in new and different ways, through gesture-based and
touch-based interactions that can improve or hamper the user experience
(Norman, 2007), (Norman & Nielsen, 2010) and (Hesselmann et al., 2011).
Interactive Tabletops and Surfaces (ITS) are highly visual systems, which are
usually controlled by touches and touch gestures performed on the device,
enabling users to directly interact with information using their hands or
tangible objects.

For ITS applications, a preferable user interface integrates gesture-based
interactions into the applications (Wobbrock et al., 2009). Frameworks
such as Windows Presentation Foundation (WPF) (“Windows Presentation
Foundation,”), provide a set of pre-defined gestures that application
developers can use easily (“Microsoft Surface User Experience Guidelines,”)
and (“GestureWorks, a multitouch application framework for Adobe Flash
and Flex.,”). However, the literature shows many examples of gestures that
are not available ‘out of the box’ (Wobbrock et al., 2009) and (Khandkar &
Maurer, 2010). When creating gestures for interacting with ITS applications,
interaction designers have to determine if users consider them natural,
understandable and easy to use (Wobbrock et al., 2009). Interactive
prototypes can help answer this question.

141

Challenges in designing ITS applications
In the context of ITS applications, designers can explore innovative ways
for users to interact with their applications. Innovative interactions might
drastically hamper the user experience if Human Computer Interaction
(HCI) principles are not taken in consideration (Norman & Nielsen, 2010).
What is necessary is a way to help designers follow HCI principles not only
on the design of the interface of ITS applications, but also the interactions
themselves.

Previous research on gesture-based interaction has shown problems with
the design of gestures, the meaning of touch and gestures, and how context
influences them (Hesselmann et al., 2011), (Hinrichs & Carpendale, 2011),
(Wobbrock et al., 2009), (Lao et al., 2009), (Long Jr, Landay, & Rowe, 1999),
(North et al., 2009) and (Morris et al., 2010). In the gesture design scenario,
there are two main challenges:

• The effort, time and technical expertise required to create
gestures (Lyons, Brashear, Westeyn, Kim, & Starner, 2007), (Kin,
Hartmann, DeRose, & Agrawala, 2012) and (Plimmer, Blagojevic,
Chang, Schmieder, & Zhen, 2012);

• The design of gestures that is suitable for specific tasks, context
and users (Hinrichs & Carpendale, 2011) and (Long Jr et al., 1999).

Research on multi-touch applications shows a lack of processes and tools
to support the design of these systems (Hesselmann et al., 2011), (Hinrichs
& Carpendale, 2011) and (Wiethoff, Schneider, Rohs, Butz, & Greenberg,
2012). The authors of these studies bring up the need to allow designers
to follow up on methods to improve the design of multi-touch applications,
such as user-centered design (Morris et al., 2010).

Hesselmann and Boll propose Surface Computing for Interactive Visual
Applications (SCIVA), a user-centered and iterative design approach
addressing some challenges in designing ITS applications (Hesselmann
et al., 2011). Their design process gives a general overview of the most
important aspects in design of ITS applications. Studying ways to interact
with tabletops, Hinrichs and Carpendale found that the choice and use of
multi-touch gestures are influenced by the action and social context in which
these gestures are performed, meaning that previous gestures and context
influence the formation of subsequent gestures (Hinrichs & Carpendale,
2011). Also supporting the contextualization of interaction is Krippendorff
(Krippendorff, 2006), highlighting that design is not only about making
things but also about allowing users to make sense of things. Both studies
suggest that to evaluate gestures, it is necessary to contextualize them in
the scenario that they will be used.

North et al. (North et al., 2009) studies how users interact with objects in
multi-touch surfaces and how designers can create intuitive and natural
gestures. They start from the assumption that interacting with objects on a

142

multi-touch surface is an experience closer to manipulating physical objects
on a table than using a desktop computer with keyboard and mouse. They
study whether familiarity with other environments influences how users
approach interaction with a multi-touch surface computer, as well as how
efficiently users complete a simple task. They show that users who started
with the physical model had a better performance when accomplishing the
task on the surface, which supports their initial assumption, but they also
suggest that more complex gestures, (e.g.: using two hands for a selection)
might not work well on a surface tabletop. This means that there should be
a balance between physical metaphors and supporting gestures to invoke
commands.

Trying to understand users’ preferences for surface gestures, Morris et al
(Morris et al., 2010) compare two gesture sets for interactive surfaces: one
created by end-user elicitation and one authored by three HCI researchers.
The study used the feedback of 21 participants on 81 gestures. Their results
showed three main findings:

• Their participants had similar gesture preference patterns;

• These preferences were towards physically and conceptually
simple gestures;

• These simple gestures had been designed by larger sets of
people, even though participants did not know how many authors
created the gesture.

Their findings suggest that participatory design methodologies should
be applied to gesture design, such as a user-centered gesture elicitation
methodology.

Studying the inconveniences that can be generated by touch based
interactions, Gerken et al. (Gerken, Jetter, Schmidt, & Reiterer, 2010)
focuses on how users compensate for conflicts between non-interactivity
and interactivity created by unintended touch interaction when using a
multi-touch enabled tabletop. They conclude that touch-enabled devices
can lead to “touch-phobia”, reducing pointing and leading to less efficient
and fluent communication. They suggested solution is to make touch
smarter and more context-aware.

Norman and Nielsen (Norman & Nielsen, 2010) published a usability study
that highlights concerns that should be addressed by designers when
creating new touch-based interfaces and ways of interacting with them. The
authors propose a balance between creative means of interacting while
preserving basic HCI principles. However, guidelines for processes that can
help designers follow a user centered design approach in the development
of ITS applications are limited (Hesselmann et al., 2011). Hence, there
needs to be an objective way to evaluate the usability of gesture-based
applications in early stages of the design and having users involved in early
stages of the design, helping designers follow a user-centered approach.

143

Prototyping for ITS applications
Having users involved early in the process through iterative prototypes has
been widely researched and the advantages of sketching and prototyping to
improve the design of applications has been proven successful (Moggridge
& Atkinson, 2007), (Rudd, Stern, & Isensee, 1996), (Sefelin, Tscheligi, & Giller,
2003), (Virzi, Sokolov, & Karis, 1996), (McCurdy, Connors, Pyrzak, Kanefsky,
& Vera, 2006), (Lim, Stolterman, & Tenenberg, 2008) and (Derboven, De
Roeck, Verstraete, Geerts, & De Grooff, 2010). Especially in the scenario
of gesture and tangible based applications, where Norman and Nielsen
(Norman & Nielsen, 2010) argued that gestures might be harmful for
usability designers, there is a need to evaluate if the gestures are improving
usability.

As shown by Moggridge (Moggridge & Atkinson, 2007), Krippendorff
(Krippendorff, 2006) and Buxton (Buxton, 2010) sketching has shown to be
a valuable aid to designers in order to validate ideas with users in early
stages of the design. In any activity of design, sketching has been proven
to be a crucial part of it and many contributions (Moggridge & Atkinson,
2007), (Wiethoff et al., 2012), (Rudd et al., 1996), (Sefelin et al., 2003), (Virzi
et al., 1996), (McCurdy et al., 2006), (Lim et al., 2008), (Derboven et al.,
2010), (Krippendorff, 2006), (Buxton, 2010), (Memmel, Gundelsweiler, &
Reiterer, 2007), (Van den Bergh, Sahni, Haesen, Luyten, & Coninx, 2011),
(Holzmann & Vogler, 2012), (Unger & Chandler, 2012) and (Obrenovic &
Martens, 2011) defend the importance and the benefits of sketching and
prototyping to improve design ideas by failing early, often and then,
learning from mistakes. While these authors defend the use of paper as
a medium to transmit ideas, sketching the dynamics of applications is not
possible without tool support (Buxton, 2010).

Memmel et al. (Memmel et al., 2007) studied how prototyping can elicit
requirements. They recommend the use of abstract prototypes, as filling
in details too early might lead to premature decisions, leading to wasted
effort and time spent on these details. Abstract prototypes help designers
understand important aspects of the content and organization of the user
interface while deferring details about how the final application will look like
and operate (Constantine, 2004). These studies motivated our research by
showing the importance of prototyping in a UCD process, which ultimately
can help designers fit the workflow in agile iterations.

Paper prototypes allow designers to evaluate the output of a system, while
the input is assumed obvious; they allow designers to evaluate what users
want to do, while how users want to do certain tasks is not trivial (Derboven
et al., 2010). If the interaction input is more complex, paper prototypes are
not sufficient (Rudd et al., 1996).

Based on the limitation of designing ITS applications, our motivation is to
make developing of usable gesture-based applications easier and better
fitting user’s needs. For this issue, a desired solution has to:

144

• Make it easy to design gestures, respecting the time and cost
constraints of prototyping;

• Make it easy to evaluate if these gestures are usable.

By using prototypes, not only design ideas but also requirements of software
can be brought to attention and properly addressed in early stages of the
development. The advantage of prototyping is that it allows designers
to experiment and invent (Robertson & Robertson, 2012). Interactive
prototypes then help “interaction designers to defi ne user interfaces, and
evaluate usability issues in early stages of design” (Van den Bergh et al.,
2011). While designing ITS applications, interactions play an important part
in the design of interfaces and can drastically improve or hamper interfaces
by having intuitive or non-intuitive gestures for interacting with them.

Having “interactive sketches” allows designers to take advantages of
having users involved and providing feedback about the interactions in ITS
applications. Memmel et al. (Memmel et al., 2007), propose the iterative
use of low-fi delity prototypes in order to validate steps of design and
development, resulting in a more iterative and agile process. Further in the
design process, sketches can become more sophisticated and goal oriented,
thus the time spent onto them changes, also changing the expectations
regarding them. This distinction defi nes the sketches as prototypes (Buxton,
2010).

Rudd et al. (Rudd et al., 1996) suggest advantages and disadvantages of
low-fi delity and high-fi delity prototyping, as shown in Table 1.

Table 1. Low- & High-Fidelity Prototyping, based on (Rudd et al., 1996), extracted
from (Memmel et al., 2007).

The disadvantages regarding interactivity that motivated this research are
drawbacks in low-fi delity prototyping that could be addressed and some of
the features from high-fi delity prototyping that could be incorporated. For
this, the tool .ve (de Souza Alcantara, Ferreira, & Maurer, 2013) was created,

145

a prototyping tool that incorporates interactivity on the level of high-fidelity
prototypes allowing usability tests based on interaction but having the low
effort cost of low-fidelity prototypes allowing the evaluation of multiple
design and interaction concepts.

ProtoActive was designed to help designers of ITS applications, a
prototyping tool that:

• Elicits user feedback through sketch-based prototypes that take
into consideration the size constraints of an ITS application;

• Allows the evaluation of how users interact with the application
by having prototypes that can be used through a pre-built set of
gestures

• Supports the development of custom gestures through a tool
that allows the creation of new gestures without requiring any
programming effort.

•
ProtoActive is a storyboard sketching based prototyping tool for multi-
touch devices that integrates with a gesture-learning tool (IGT)(Alcantara,
Denzinger, Ferreira, & Maurer, 2012) to evaluate custom gestures in
prototypes. This chapter will explain the process of designing ProtoActive
involving requirements gathered from related work and from a qualitative
study with participants from industry. The following sections will also explain
ProtoActive features and the workflow of a designer using ProtoActive to
create interactive prototypes.

To gather requirements for a sketch-based prototyping tool, it was used:

• Existing research about computer-based prototyping tools and
problems found in existing tool support for prototyping (Obrenovic
& Martens, 2011), (Segura, Barbosa, & Simões, 2012), (Lin, 1999),
(Bailey, Konstan, & Carlis, 2001), (“Balsamiq,”), (“Pencil: Add-on for
Mozilla Firefox,”), (“iPlotz: Wireframes, mockups and prototyping
for websites. ,”), (“Axure RP: Interactive wireframe software and
mockup tool.,”), (“Mockingbird: Wireframes on the fly. ,”), (“Microsoft
Sketchflow.,”), (“ForeUI: Easy to use UI prototyping tool. ,”), (“Proto.
io : Silly-fast mobile prototyping. ,”) and (Smith & Graham, 2010);

• A qualitative study that consisted of semi-structured interviews with
five User Experience (UX) designers from different companies.

ProtoActive was created to address the drawbacks of existing prototyping
tools and from a qualitative user study with five UX designers from industry.
The following sections explain how ProtoActive addresses these drawbacks
and the requirements gathered from the UX designers.

Improving the paper experience
Sefelin et al. (Sefelin et al., 2003) compare paper prototyping with
prototyping using software tools. Their study suggests three scenarios

146

where paper prototyping would be a preferable medium. ProtoActive
addresses these scenarios as follows.

1. It allows expression of ideas and customization from the designers:
ProtoActive allows designers to create free-hand sketches on a
drawing canvas.

2. Require minimum expertise to use: In order to simulate the paper
experience, ProtoActive has an intuitive and easy-to-learn interface
that allows designers to create prototypes without requiring much
time to learn the application. In order to do so, ProtoActive is a
sketching tool with basic commands: free-hand sketching, sketch
eraser, color picker, and strokes selection. Two features were added:
adding and removing a background (which allows the designer to
import existing images into their prototypes). Finally, to have a flow
between the pages, designers can specify areas in the prototype
page that when interacted with, will trigger a page movement set by
the designer.

3. During evaluation, ProtoActive allows participants to easily sketch
over the interface as a medium of feedback.

4. A designer is able to save multiple copies of a prototype, so during
evaluations users can suggest modifications on the prototype itself.
The tool is simple enough that making modifications to a page is as
simple as sketching on a paper.

Help designers follow design guidelines for ITS applications
SCIVA 3 is an iterative process for designing gesture-based interfaces for
interactive surfaces. In order to help designers have a more systematic
approach in the design of ITS applications, ProtoActive helps designers
follow three steps of the SCIVA design process: defining the right
visualization, conducting user studies to create gestures and evaluating the
system with the user to detect flaws from previous steps. The following
sections explain how ProtoActive addresses these steps.

Defining the right visualization. In ITS applications, there is a tight coupling
between input (gestures and touch) and output (visualized objects on
the screen). ProtoActive allows designers to create prototypes without
constraining creative ideas by supporting the creation of free-hand
sketch prototypes that will allow for any type of object on the screen. If
designers decide to have a more accurate visualization, ProtoActive allows
designers to import high-quality pictures into their prototypes. ProtoActive
helps brainstorming and gathering feedback from users. It also helps in
optimizing visualizations according to characteristics of ITS. The visualization
optimization can be achieved by letting designers create and evaluate
the prototypes in the ITS devices themselves. This allows for a realistic
evaluation of distance, position and orientation of objects in the screen.

Conducting user studies to create gestures. For ITS applications, there

147

are sets of defined gestures offered (“GestureWorks, a multitouch
application framework for Adobe Flash and Flex.,”), (“Microsoft Surface
User Experience Guidelines,”) that help designers define the input of ITS
applications. However, these sets can be insufficient due to particularities
of devices, location, context and orientation. In order to improve the user
experience, it is necessary to evaluate the interaction of ITS applications
with users. ProtoActive gives designer a pre-built set of gestures that can
be extended by using a gesture recorder application (IGT). These gestures
can be evaluated to interact in the context of the ITS application by being
the input of prototypes in ProtoActive.

Evaluate the system to detect flaws resulting from previous steps. ProtoActive
helps designers involve users in early stages of the design process by taking
advantage of the low-fidelity prototype’ features of the tool, by being easy
and fast to use, and by having prototypes with a dirty look, thus eliciting
more user feedback as affirmed by Buxton (Buxton, 2010).

A key drawback among the studied prototyping tools was the lack of gesture
customization for users to interact with the prototypes during usability
studies. Allowing designers to create custom gestures allows the creation
of new ways to interact that might better suit for a certain task or group of
users. ProtoActive provides a set of pre-built gestures that can be expanded
using IGT (Alcantara et al., 2012), a tool that allows designers to provide
samples of a gesture to create new gesture definitions that can be used
to interact with the prototypes. This feature was gathered from drawbacks
of the following tools: CrossWeaver (Sinha & Landay, 2003), Balsamiq
Mockups (“Balsamiq,”), Pencil (“Pencil: Add-on for Mozilla Firefox,”), Fore
UI (“ForeUI: Easy to use UI prototyping tool. ,”) and Proto.io (“Proto.io :
Silly-fast mobile prototyping. ,”).

The prototyping tools that allow custom interactions also come with the
cost of requiring a programming step for customization. This was seen as
a drawback as it adds to the cost of prototyping (more time or even the
involvement of software developers to create the customization). ProtoActive
allows designers to fully create a prototype without requiring programming
skills. Creating prototype pages, linking them through gestures, creating
custom gestures and evaluating them can be accomplished in ProtoActive
through its GUI. This feature was gathered from drawbacks of the following
tools: Raptor (Smith & Graham, 2010), Sketchify (Obrenovic & Martens,
2011) and Microsoft Sketch Flow (“Microsoft Sketchflow.,”).

By allowing designers to sketch in a similar fashion as sketching on paper,
ProtoActive allows designers to create interfaces that are not constrained
by a pre-built set of controls. Among the tools studied, a constant problem
was the lack of a feature that allows designers to free-hand sketch pages.
Having pre-built UI widgets might increase the productivity and the speed
of creating prototypes, but this comes at the cost of constraining creativity,
especially for the design of ITS applications as that field is still evolving (and

148

so are the UI widgets used in these applications). ProtoActive is a sketch-
based prototyping tool based on Buxton’s principles (Buxton, 2010) about
low-fidelity prototypes looking quick and dirty to encourage users to provide
more feedback. Having a sketch-based prototyping tool was derived from
drawbacks of UISKEI (Segura et al., 2012), SILK (Lin, 1999), DEMAIS (Bailey
et al., 2001), Balsamiq Mockups (“Balsamiq,”), Pencil (“Pencil: Add-on for
Mozilla Firefox,”), iPlotz (“iPlotz: Wireframes, mockups and prototyping
for websites. ,”), AxureRp (“Axure RP: Interactive wireframe software and
mockup tool.,”), MockingBird (“Mockingbird: Wireframes on the fly. ,”),
Microsoft Sketch Flow (“Microsoft Sketchflow.,”), Fore UI (“ForeUI: Easy
to use UI prototyping tool. ,”) and Proto.io (“Proto.io : Silly-fast mobile
prototyping. ,”).

ProtoActive allows designers to create prototypes that focus on usability
as well as interaction. In order to improve the sketching experience in ITS
devices, ProtoActive drawing features consist of:

• A canvas area that can be drawn using fingers or stylus pen;

• An eraser functionality;

• A selection button to select strokes on the canvas to move, resize or
remove;

• A color button to change the color of the stroke;

• An undo button;

• A gesture area button that allows designers to draw an area on the
canvas to define a gesture area.

A gesture area is an area defined in a prototype’s page can contain a list
of gesture and prototype’s page associations. When a designer defines a
gesture area in a prototype, he can associate a gesture with this area by
choosing from a list of pre-defined gestures or define a custom gesture.
After selecting the gesture, the designer is asked to choose which page she
wants the prototype to navigate to when the gesture is recognized during a
user study. To remove selected strokes or gesture areas from the canvas, a
designer drags the selected strokes or gesture area to the right side of the
canvas (to the trashcan area), in a similar fashion as a designer would move
or remove an object placed on top of a sheet of paper.

The following sections will explain ProtoActive in two aspects: as a tool and
its features to design prototypes, and as a tool to evaluate prototypes.

ProtoActive
ProtoActive keeps the sketching area to a maximum (which can be seen
in Figure 1 as the empty white space). Sketching in ProtoActive can be
conducted with free hand or with a stylus pen. No drag-and-drop or sketch
recognition was implemented in ProtoActive and the only filter added to
the sketching canvas is a “FitToCurve” feature that smooths out the stroke.

149

Figure 1.

During usability studies, prototypes in ProtoActive can be interacted with
via gestures. The gesture area button (Figure 1, item 1) allows designers
to defi ne gesture areas by performing a lasso on the screen, the bounding
area of the lasso will become a gesture area in the prototype.

To help designers simulate movement and zoom features in their
applications, ProtoActive allows strokes to be selected, resized and moved
on the canvas. By clicking on the scissors button (Figure 1, item 3) a designer
can perform a lasso on the canvas to select all the strokes inside the lasso.
With the selected strokes, a designer can move them on the canvas, remove
them (by dragging them to the trashcan area) or resize them (by using zoom
or pinch gesture).

ProtoActive allows designers to set the background of a page, by the two
buttons: add background (Figure 1, item 5) and remove background (Figure
1, item 6). This was required in order to create prototypes that work with
a static image as a background. Unger and Chandler show an example of
the value of this feature in their book UX Design (Unger & Chandler, 2012).
In the prototype chapter of the book, the authors explains how a designer
can create prototypes in a What You See Is What You Get (WYSIWYG) tool
such as Dreamweaver CS4 (“Dreamweaver CS4,”) and export the prototype
pages as separate images and set them as a clickable background in an
HTML page. A similar solution can be achieved with ProtoActive by using
the set background (Figure 1, item 5) feature to set the background of a
prototype page with images from other applications. In ProtoActive, after
setting the background of a page, a designer can still draw on the top of
the image and add gesture areas, which allow setting specifi c parts of the
background to respond to gestures and trigger page transition.

The new button (Figure 1, item 9) creates a new empty page, while the
duplicate button (Figure 1, item 10) creates a duplicate of the current page
in the prototype with the same drawings, and gesture areas of the original.
The remove button (Figure 1, item 11) will remove the current page of the
prototype. To facilitate the removal of gesture areas and strokes, the right

150

side of ProtoActive has a trashcan area (Figure 1, item 14) where gesture
areas and selected strokes can be dropped and removed from the canvas.
Finally, the exit button (Figure 1, item 18) closes the application.

The evaluate button (Figure 1, item 15) switches ProtoActive into evaluation
mode. In evaluation mode, the canvas turns full screen, non-editable and
the pages can be navigated using gestures.

ProtoActive has drawing tools to helps users create prototypes: the eraser
button (Figure 1, item 2) allows the designer to erase strokes using his fi nger,
the undo button (Figure 1, item 4) allows designers to undo stroke mistakes.
In order to allow the design of colored prototypes (allowing designers to
highlight some areas with a specifi c color) the color button (Figure 1, item 7)
allows the designer to select the color of the stroke on the canvas.

A navigation control allows users to navigate through the prototype’s page.
“List” (Figure 1item 8) shows a list of thumbnails of all the pages in the
prototype. The navigation buttons (Figure 1, item 12) changes the page to
the previous (if there is any) or to the next page (if there is any), and the save
(Figure 1, item 16) and load (Figure 1, item 17) buttons allow designers to
export their designs to different devices running ProtoActive.

Figure 2. Gesture area trigger selection.

Finally, gesture areas (Figure 1, item 19) are movable and resizable areas
on the page of a prototype that can be bound to one or multiple pairs of
gestures and pages. From a gesture area, the designer can select the gesture
menu (Figure 1, item 20), which will bring up the gestures triggers dialog
(Figure 2) where a designer can use a pre-built set of common gestures and
bind its detection to showing a specifi c page on the prototype chosen by
the designer. The list of predefi ned gestures includes:

151

• Tap, a single tap with the fi nger on the surface;

• Double Tap, subsequent taps with the fi nger on the surface;

• Pinch, gesture using two fi ngers moving towards each other;

• Swipe left, single fi nger moving left;

• Swipe right, single fi nger moving right;

• Lasso, single fi nger gesture of an arbitrary shape establishing a closed
loop;

• Zoom, gesture using two fi ngers moving in opposite directions.

If a designer wants to use a gesture that is not listed, he can create custom
gestures using an embed gesture creation tool: Intelligent Gesture Toolkit
(IGT) by clicking on Add custom gesture button (Figure 2) or Record
Gesture (Figure 1, item 13). ProtoActive is integrated with IGT (Figure 3),
allowing the designer to create custom gestures and evaluate them with
the prototypes. Any custom gesture created in ProtoActive through IGT
will be automatically available for all the projects on the gesture triggers list
(Figure 2).

Figure 3. IGT screenshot.

Recording gestures in IGT
The IGT gesture defi nition workfl ow can be seen in Figure 4. A gesture
defi nition needs to be as broad as necessary to surpass the nuances of
different users performing the gesture in different moments. A gesture also
needs to be as precise as possible to avoid confl ict with other gestures and
to be detected only when this gesture is really intended by the user. In order
to gather the terms and the different nuances to defi ne a gesture, IGT asks
the designer to train the tool by performing samples of the gesture they
want to create. It is up to the designer to provide samples that cover all
the nuances they desire the gesture defi nition to cover. It is also up to the
designer to create the gestures providing the samples or by asking users to
provide samples to generate gesture defi nitions.

152

Figure 4. IGT Architecture.

Based on experimentation and custom heuristics, a sample is considered
outside the standard when less than 20% of the gesture matches any of
the previous samples. The designer can choose to keep the non-standard
sample, which creates a more general gesture, or the designer can remove
the sample and add another one.

Using the Gesture Defi nition Language (GDL) to defi ne gestures allows the
designer to read the defi nition of the sample as seen in Figure 5. If the
designer does not agree with the gesture defi nition, she can remove the
gesture defi nition and submit a new sample.

Figure 5. IGT Sample repository.

153

If a gesture definition is too specific, the designer has two options:

• Provide more samples to generate more variances for the anti-
unification algorithm

• Change the “MATCHING ACCURACY”.

When the designer agrees with the gesture definition provided, he can try
the gesture in IGT by clicking “TRY” button (Figure 3). If the designer is
satisfied with the gesture recognition, he can save the gesture thus making
it available to any application using Gesture Toolkit with the IGT extension
to GDL.

Pilot Evaluation
Prototyping is one of the steps of user-centered design that has been
proven to be an effective way to include users early in the design process,
producing products that better fit user’s need by getting early feedback.
ProtoActive allows designers to evaluate two aspects of ITS applications:
layout ideas through sketches of the prototype and interactions through
pre-built or custom gestures. To evaluate the approach, we conducted a
sequence of pilot evaluations.

The first pilot gathered different gestures that participants created to
perform similar tasks. The variety of gestures created for the same task
suggests that designers could benefit from such a tool as ProtoActive to
evaluate different and innovative interactions.
Additional pilot studies had participants use ProtoActive and discuss its
gesture creation and evaluation feature. The second study gave the same
task to participants and asked them to create a gesture to accomplish a
given task. The variety of gestures and the feedback from the participants
suggest that such a create-custom-gesture feature might allow designers
to innovate and try new design ideas with users. Due to the low cost and
easiness to create and evaluate different ideas, more alternative designs
can be explored.

The third pilot study evaluated ProtoActive’s ability of evaluating interactions
through tangibles, using fiduciary markers. The received feedback
anecdotally suggests that using ProtoActive to appraise interactions that
would normally be time consuming to create allows designers to experiment
with ideas in an early stage. Additional feedback coming from experienced
designers highlights ProtoActive’s potential to reduce development effort
for ITS applications.

Conclusion
Our approach offers a pragmatic prototyping solution for ITS application
development that is supported by two integrated tools. The first is
ProtoActive, a sketch based prototyping tool for ITS applications. The main
contribution of ProtoActive is to allow designers to evaluate not only the
output of sketch-based prototypes, namely: can a user accomplish a task,

154

but also the gesture interactions for accomplishing the task. ProtoActive
provides a pre-built set of gestures and supports customized gestures
created with an embed gesture learner tool, IGT.

IGT uses samples of a gesture performed on the device to create a gesture
definition that can recognize all the samples provided for a specific gesture.
The novelty of IGT relies on the unique anti-unification approach used
to identify all the common aspects between the samples, thus creating a
gesture definition that is the most specific template covering all samples.

Enabling designers to create custom gestures allows the evaluation of
different interaction ideas within similar costs and time constraints of low-
fidelity prototyping. Providing designers with ways to evaluate custom
gestures in the final application context (through using the custom created
gestures in interactive prototypes) allows these innovative interactions to
be developed following a user-centered approach as recommended by
Norman and Nielsen (Norman & Nielsen, 2010).

155

Pairing for Designing Visualizations

Shahbano Farooq, Sheelagh Carpendale and
Frank Maurer

Introduction
“A graphic is no longer ‘drawn’ once and for all: it is ‘constructed’ and
reconstructed manipulated until all the relationships which lie within it have
been perceived...a graphic is never an end in itself: it is a moment in the
process of decision making.” (Bertin, 1981). As Bertin said, while creating
data representations one learns more about the data and the relationships
within the data. With the help of this increased understanding of the
data, one can improve the design of visualizations. Domain experts have
stronger and deeper knowledge about the data and its relationships than
the visualization designers. On the other hand, visualization designers have
a better grasp of design concepts. Therefore, we suggest that the best
outcomes can be reached by a close collaboration between the two.

Visualizations are becoming a widespread method for understanding
data due to the availability of generalized business intelligence tools that
support simple and interactive visual design, such as Tableau (Mackinlay,
Hanrahan, & Stolte, 2007) and Spotfire (T.I.B.C.O, 2014). These tools have
enabled domain experts to quickly transform data into simple as well as
complex diagrams and charts. However, when the domain and the tasks
are too complex, design expertise is needed to create visualizations that
are easy to understand and supporting analysis as well as exploration tasks.
In these situations, designers and domain experts need to work together
to create custom visualizations for the complex domain and requirements.

According to the existing process of visualization design in the field (Sedlmair,
Meyer, & Munzner, 2012), domain experts do not actively participate in the
design of visualizations. They are limited to providing requirements and
feedback on visualization designs. We wanted to overcome this limitation
by creating a process that allows designers and domain experts to
synchronously collaborate on creating complex visualizations. The process
is inspired by pair programming (Williams, Kessler 2002) and allows both
participants to take on active roles in the design process.

156

Background – Visualization Design Process
To understand collaboration between the domain expert and visualization
designer, we fi rst need to understand how visualizations are designed in the
real world. (Sedlmair, et al., 2012) have outlined the design study process,
suggesting nine activities are carried out by a visualization designer, as
illustrated in Figure 1.

Figure 1. The nine stage Design Study Methodology Framework. Modifi ed from
(Sedlmair, et al., 2012). Illustrates activities carried out by the visualization designer

while conducting a design study.

In this nine stage process, the precondition stage defi nes the tasks necessary
to allow the designer to gain a general understanding of the data. These
tasks include Learn, Winnow, and Cast.

The Core phase consists of the visualization design activities – Discover,
Design, Implement, and Deploy. The Discover stage allows the visualization
designer to develop an understanding of the domain, the users, and the
problem, using user-centered design approaches, such as, observational
studies, contextual enquiries, and interviews (Dix, 1998). The Design
stage requires the Visualization designer to create low-fi delity paper
or programmatic prototypes. The steps performed by the visualization
designer include data collection & abstraction, mapping data to visual
encodings and visual representation & interaction (Card, et al., 1999). The
role of the domain expert(s) at this stage is to review the prototype designs
and select the most useful.

In the Implement stage, a visualization designer implements the selected
prototype, tests it using usability evaluation techniques and modifi es the
tool to overcome usability issues. The Deploy stage allows the domain
expert to test the visualization in their day to day work activities so that she
can provide usability feedback to the visualization designer.

According to this process, visualization designers are responsible for
understanding the domain, the requirements, and designing a useful

157

visualization tool whereas the domain expert’s role in the process is to
provide input in the form of requirements, review, and feedback. Moreover,
the domain experts and the visualization designers work asynchronously,
with communication points for sharing information and feedback. We
propose a modification to the Core Phase of the Visualization Design study
Methodology, illustrated in Figure 1. Our research interest is to involve the
domain expert in designing visualizations in close collaboration with the
visualization designer (Pretorius & Wijk, 2009). We looked into existing
literature to determine the current state of research.

Related Work
Collaborative Information Visualization is a relatively new sub area of
information visualization. (Mark, Kobsa, & Gonzalez, 2002) state that “that
given the right visualization system, groups do better than individuals in
finding more accurate results.”. Recent interest towards “big data” analysis
is also considering collaborative analysis of data on large displays (Isenberg,
et al., 2010), (Forlines, et al., 2005). Current synopses in collaborative
information (Heer, et al., 2008), (Stusak, 2009), and (Isenberg, et al., 2011)
provide and overview on research on how to support a team of experts
during visualization analysis. However, there is limited research on how to
support a team of experts during visualization design.

Two Expert Challenge
Visualization researchers have noticed discomfort between the visualization
designer and the domain expert during data collection and requirement
analysis activities. (Van Wijk, 2006) believes that a knowledge gap exists
between a domain expert and a visualization designer. By knowledge gap
the researcher is referring to their diverse areas of expertise and use of
different terms and terminology to express themselves, which can result
in confusion and frustration. Wijk suggests that this gap can be filled by
educating domain experts to define visualizations. Some researchers have
tried to bridge this gap while performing a long-term case study (Lloyd &
Dykes, 2011). They educated the domain experts on a comprehensive set
of possible visualization designs and interactions by giving them a lecture.
Then they asked the domain experts to sketch possible designs for the
data and tasks. Visualization designers were able to identify important
design and interaction requirements from the sketches. It is evident from
this research that teaching information visualization to domain experts and
taking design requirements from them is useful. However, in this case study,
the visualization designers did not assist the domain experts in creating the
sketched paper prototypes. Recent research indicates that novice users, like
domain experts newly trained on visualization techniques, face difficulty in
creating and analyzing visualizations accurately on their own (Grammel, et
al., 2010). We propose that domain experts should always be involved in
visualization design, however in collaboration with visualization designers.

Multiple Prototypes
(Sedlmair, et al., 2012) have explained that when the data and tasks are

158

complex or the scope of the domain is huge, the metadata information is
partially in the head of the domain experts. (Pretorius & Wijk, 2009) with
evidence from their experiences in design studies, have highlighted that
information about the data and the tasks evolves through prototyping in
close collaboration with domain experts. “Rather than trying to fine-tune a
single technique”, the researchers suggest “an exploratory approach where
a number of prototypes are developed in close collaboration with users”
and “when a promising idea is uncovered, it is then possible to nurture it to
a mature solution.” (Pretorius & Wijk, 2009). Visualization designers make
use of paper or programmatic prototypes to get feedback from domain
experts. We decided to support the scenario of a domain expert and a
visualization designer creating prototypes together quickly and interactively
using a visualization tool.

Paired Analytics
Pair programming is a well-know collaboration approach in software
development, coming from agile methodologies. Pair programming
means that two programmers work together on the same machine. One
programmer, the driver writes code, while the other, the navigator, reviews
and helps the driver. The two programmers exchange roles frequently.
According to a survey on pair programming (Cockburn & Williams, 2000), pair
programming improves design quality, reduces defects, and improves team
communication. (Arias-Hernandez, et al., 2011) used this concept to study
visual analysis. They paired a domain expert and a visualization designer
to study visual data analysis activities and referred to it as “Pair Analytics”.
The researchers found that Pair Analytics provided them with a more natural
means of capturing analytic reasoning rather than “think aloud protocol”.
Research evidence suggests that tightly coupled work environments lead to
a natural means of discourse between team members (Tang, et al., 2006).
We propose that pairing domain experts and visualization designers during
visualization design activities can lead to a natural discussions on data, task
requirements, and visualization designs.

Iterative Design
(Grammel, et al., 2010) conducted a study to learn how novice users with
limited knowledge of visualization design create visualizations on their
own. An important finding of their research is that participants repeated
visualization design activities with different representations till a useful
visualization was found. The research informs us that these iterative
visualization design activities support learning in three ways: understanding
the data with different representations, finding the accurate representation,
and gaining experience in visualization design. We propose that iterative
construction and discussion can support knowledge sharing between the
two experts and can contribute to better design decisions. This idea is also
used in design education and is known as learning by design or problem-
based learning (Kolodner, et al., 1998). The approach a very effective
practice in supporting collaborative designs in a classroom setting and
helps students create better designs based on their own learning through

159

problem-solving and critique from their peers.

Reviewing Existing Visualization Tools
There are different types of Information visualization users and many
commercial tools and open source toolkits have emerged to support their
differences. (Heer, et al., 2008) have categorized these differences based
on the following:

User Skill and Knowledge of Visualization Design and Analysis. Domain
experts can create standard visualizations using commercial tools, such
as Tableau (Mackinlay, et al., 2007) and Spotfire (T.I.B.C.O, 2014). When
these tools do not provide adequate results, visualization experts can
programmatically create novel visualizations and interactions using toolkits,
such as Processing (Reas & Fry, 2014) and D3 (Bostock , et al., 2011) to satisfy
unique and complex requirements. None of the existing tools support the
scenario of interactive design involving novice users and programmatic
enhancement by experts (Heer, et al., 2008).

Visualization Design Requirement: Exploratory vs. Explanatory Design.
Some visualizations are static in nature and provide the outliers or trends
in a single glace of the view – they are explanatory visualizations. In our
case, we need a tool to explore the data and find the appropriate view
that can highlight the trends and outliers in the data. Existing commercial
visualization tools support quick and interactive means of exploring data
through different visualizations. We want to support a designer and a
domain expert in collaborative visualization prototyping.

Number of Users: Single or Collaborative Visualization Design and Analysis.
Most commercial visualization tools support single or asynchronous design
and analysis of visualizations. In recent years some research tools have
emerged that support collaborative analysis, but none have looked into
supporting collaborative design of visualizations (Isenberg &
Caprendale, 2007), (Isenberg & Fisher, 2009), (Tobiasz , et al., 2009),
(Forlines, et al., 2005), and (Forlines & lilien, 2008).

User’s Role in Visualization Design and Analysis. Tools also need to support
the visualization designers and the domain experts during the visualization
design process. Visualization tools for requirements gathering, collaborative
designing, and visualization testing are yet to be designed.

On reviewing existing tools and our requirements, we came to the conclusion
that existing tools do not support the scenario of collaborative visualization
prototyping between a domain expert and a visualization designer.

Requirements
As discussed in the Related Work section, we were faced with the challenge
of creating a visualization prototyping tool to support collaboration between
the domain expert and the visualization designer on the data, tasks,

160

and the visualization designs. The following section describes the major
requirements we followed to create a tool named PairedVis. The tool can
support the two experts in collaborative prototyping. PairedVis is designed
based on the following functional requirements:

R1. Two Expert Challenge. The tool should provide an interface for
discussing the data and the underlying relationships in the data that are
in the mind of the domain expert to aid in the selection of useful visual
representations (Sedlmair, et al., 2012), (Pretorius & Wijk, 2009). Similarly, we
need to support a visualization designer in explaining existing visualization
templates and how to perceive them accurately to aid the domain experts
in understanding, designing, and interpreting visualizations accurately
(Grammel, et al., 2010).

R2. Multiple Prototypes. The tool should provide quick and interactive
means of creating visualizations to support prototyping. The quick and
simple interactions can enable a domain expert to actively participate
during prototyping. On the other hand, we also need to support a
visualization designer in programmatically enhancing the existing templates
into functional prototypes (Heer, et al., 2008).

R3. Paired Analytics. We want the two experts to take turns in discussing
their expertise during visualization prototyping. As a result, we want to
support tightly coupled work on a tabletop in a collocated environment
(Tang, et al., 2006).

R4. Iterative Design. The tool should support quick and interactive means
of switching between visualization templates to support iterative design.

Interface Design
We designed a tool, PairedVis to support collaborative design activities
between a visualization designer and a domain expert using visualization
templates. The interface of PairedVis is designed based on the data state
reference model (Card, et al., 1999). As a result, the interface has four panels;
the data panel, the data transformation panel, the view transformation
panel, and the code panel. The main interface design is shown as an
abstract representation in Figure 2. The screen can show two panels at a
time. Arrows can be used to fl ow back and forth between the panels at any
time.

Figure 2. PairedVis interface with four panels.
The screen showing two panels at a time.

161

The Data panel holds the dataset in a table format. The second panel, the
Data Transformation panel, can be used to create relationships between
the data columns. The third panel enables mapping of data to visual
representations, therefore it is called the View Transformation panel. The
Code panel provides the code behind the visualization for sharing or
customization.

Discussing Data
Before creating visualizations, the domain expert and a visualization designer
need to have a shared understanding of the data and the requirements.
Therefore, we have designed the data transformation panel to support
domain experts in discussing the data and the relationships between the
data variables. Our approach to providing discussion on the data is inspired
by concept mapping diagrams (Novak & Canas, 2008) such as Class
Diagrams from software engineering and entity-relationship diagrams in
database modeling. In PairedVis, data variables of interest can be selected
from the tabular data in the Data Panel. The selected attributes (or: data
variables) are represented as bubbles (circles) on the data transformation
panel for concept mapping, as shown in Figure 3.

Figure 3. Left panel for uploading data and selecting attributes. Right panel
for data transformation. On tapping an attribute (column) on the left, a bubble

appears on the right representing the variable. A user can interact with the
selected data variables.

As shown in Figure 3, we represent the selected data variable as a bubble
(circle) on the data transformation panel. The domain expert can use the
Data Transformation panel on the right to explain the relationships between
the data. We were inspired by relationships based on entity-relationship
diagrams in database modelling. In entity-relationship diagrams there are
two major types of relationships, hierarchical/parent-child relationships and
associative relationships.

162

Hierarchical. Assume that the domain expert is interested in exploring
disastrous events data of Canada. He\she can explain that events can
be categorized based on event types; such as, wild fi res, landslides,
thunderstorms, and so on. Event types can be further categorized under
event groups, such as Natural Disasters, Industrial Accidents, War, and
so on. This hierarchical relationship can be represented using a bubble
inside a bubble, as shown in Figure 5. “Events” are placed inside “Event_
Type” and “Event_Type” is placed inside “Event_Group”. The hierarchical
representation of a bubble inside a bubble can also be used for grouping.
For both hierarchy and grouping we used the same interaction, because
the nesting operation is required to facilitate both grouping and hierarchy
of data.

Figure 4 (left). Using bubbles inside a bubble to show hierarchical relationship;

Figure 5 (right). Links between the bubbles showing an associative relationship.

Causal or Associative Relationship. This relationship is used when one data
variable is associated or dependent on the other but cannot be categorized
as inheritance. For example, a domain expert might want to explain that for
each event he has information about the number of injuries, evacuees, and
fatalities that occurred. This relationship can be represented with the use of
links between the bubbles, as shown in Figure 5.

The use of these two relationships results in a graph structure. Prefuse
(Heer, et al., 2005), made use of a graph structure between the data and
the visualization, to facilitate data transformation operations. The difference
in our tool is that we have provided a visual form for representing data
and have provided interactions to show relationships between the data
variables in visual form.

Discussing Visualization Design
After understanding the data, the visualization designer can suggest

163

appropriate visual representations for the data. We have presented sample
visualization representations in a sliding thumbnail bar at the top of the view
transformation panel, shown in Figure 6.

Figure 6. View Transformation Panel on the right. The thumbnail bar on the top
shows the six templates mapped to sample datasets. The scatterplot has been
selected and is in view. The data variables available with the scatterplot are in the

middle of the data transformation panel and the view panel.

The view transformation panel currently supports six representations:
bar chart, scatterplot, bubble chart, Reingold tree layout, treemap, and
parallel coordinates. Each of these representations are mapped to sample
datasets. Figure 6, shows the Scatterplot mapped to the sample data
about immigrants to Canada based on country of birth. We also provided
a breakdown of visualizations into their basic components to help explain
visual mappings to novice users as suggested by (Grammel, et al., 2010)
(Kwon, et al., 2011). To create a visualization, the two experts need to map
a data variable to one of the visual variables shown in the center of Figure
6. By selecting a visual variable in the template, the visualization changes
and only shows the selected visual variable in the view. This serves as a
simple beginning for domain experts to understand some of the complex
visualizations developed by the community.

Addressing Interactive and Iterative Design
PairedVis enables the two experts to move between the panels with a simple
swipe to support fl uidity during iterative selection of data and mapping
to visualizations. Selecting and switching between templates and visual
variables is supported by simple drag and drop interactions. The major
goal of PairedVis is to facilitate data exploration and discussion through
a few visualization templates. However, PairedVis also allows visualization
designers to enhance the existing templates programmatically. As a result,
there are no extra panels to perform data transformation operations,
selecting colors from a palette and, so on. These operations are handled

164

automatically. The data transformation operations, such as nesting occurs
based on the relationships created between the data variables in the data
transformation panel. The bubble inside a bubble results in a nesting
operation. Similarly, view transformation operations such as color encoding
is also automated. Personalized choices are left to the programmatic
customization of the visualization through the code panel.

To support platform independence, PairedVis is designed in HTML5 and
JavaScript. The visualizations are created using the JavaScript based toolkit
D3 (Bostock , et al., 2011). D3 is an open source JavaScript library and
there are many open source templates designed by the community that do
not just provide data representations but also interactions to support data
exploration. For example, we used the treemap template that facilitates
zooming in on a parent to view only the children that belong to it. We
however, made small modifications to the interactions provided by default
with these templates to facilitate touch interactions. The following section
describes the initial laboratory study we conducted as a first step towards
evaluating PairedVis.

Evaluation
PairedVis is designed to support collaborative prototyping involving a
domain expert and a visualization designer. As a result, it would have been
natural to study this collaboration in a real world setting. However, PairedVis
is in the early stages of development and is currently a functional prototype.
Therefore, we decided to get initial feedback in a laboratory setting.

Study Goals
PairedVis is designed to support both the domain expert and the
visualization designer in sharing their knowledge. The interface of PairedVis
enables a domain expert to share his knowledge of the data and the
visualization designer to share his knowledge of visualizations. Moreover,
PairedVis interface was made simple to ensure that domain experts can
understand how to map data and analyze representations. Therefore, our
study goal was to investigate whether knowledge sharing activities occur
during visualization design with PairedVis. We also wanted to investigate
whether both experts critique the selected visualizations and discuss their
limitations in satisfying data and task requirements.

Study Methodology
To evaluate our research goals, we conducted the study in a laboratory
environment. We decided to use a fresh pair of participants, a domain
expert and a visualization designer in each experiment. We took a qualitative
approach to investigating the impact of PairedVis on two questions:

• How does PairedVis support the participants in sharing their
knowledge and experience?

• How does their collaboration critique existing representations
and their limitations with respect to data and user requirements?

165

Participants
Twelve university students were recruited for this study through mailing lists
and word of mouth. Two participants worked together as a pair resulting
in six experiments that took place in one week. Participants with two or
more years of experience in visualization design were given the role of a
visualization designer and were paired with a participant with no experience
in visualization design, who took up the role of a domain expert. We
could not recruit professional domain experts and visualization designers.
However, in the fi rst 20 minutes of the study, we motivated them to take up
the role of a domain expert or the visualization designer. The domain expert
was provided 20 minutes to get familiar with the data, while the visualization
designer was given the same time to learn how to create visualizations with
PairedVis.

Setup
The study environment consisted of two labs in close proximity, Lab A and
Lab B. Lab A was setup with a touch-enabled tabletop connected to a
keyboard and a mouse. PairedVis was running in the browser on the tabletop
before the experiment. A camera was positioned on top of the table to
capture participants’ activities on the tabletop and record the conversation
between the participants. Lab B was setup with data and tasks on paper, as
well as on an electronic tablet, to facilitate data and tasks on both mediums.

Procedure
The study required two researchers, one to assist each participant in the
two labs. The visualization designer was invited to Lab A, whereas the
domain expert was invited to Lab B. The study consisted of three parts.
Part 1 took 20 minutes of the study and during this time the participants
were given the information necessary to take up their respective roles. Part
2 took 30 minutes during which the domain expert and the visualization
designer created visualizations together using PairedVis. During Part 3, the
participants shared their experiences in a follow-up interview separately.

Tasks
We used a simple dataset that provides details about disastrous events
that occurred in Canada (Statistics, 2013). The events were described in ten
columns, consisting of the Event_Group, Event_Type, Provinces, Fatalities,
Injured, Evacuated, Days, Cost, Year, and Month. The domain experts were
provided with a task sheet on paper, consisting of six tasks, as shown in
Table 1.

Table 1. Tasks and the expected results of these tasks.

166

Data Collection
We observed and videotaped the participants during the second part of the
study, while they were creating visualizations in collaboration. We did not
consider how much time was taken to complete the tasks or how many tasks
were completed in each study. After the study, we interviewed them to gain
more insight into the experience of the participants. We had determined a
few questions to guide us through these open ended interviews.

Data Analysis Methods
We used a qualitative approach to analyzing the video recordings of the
collaborative visualization activities. This helped us in investigating the
communication between the two experts during the study. We transcribed
the video based on the major activities carried out during visualization
design. These activities were repeated in a cycle for each task and can be
described based on the Data State Reference Model (Card, et al., 1999);
data abstraction, visual representation selection, visual mappings, and
visual analysis. This is a similar approach to (Isenberg, et al., 2010). As
a result, a visualization design cycle starts when a task is read and ends
when the task result is written in the task sheet. During the second parse
of the video recordings we closely observed discussions while these tasks
were performed and found other important activities, such as task and
data clarifications, representation explanations, and critique. This study
is different from other studies (Grammel, et al., 2010), (Isenberg, et al.,
2010), (Kwon, et al., 2011), because we looked at the discussion between
a domain expert and a visualization designer while creating and analyzing
visualizations together.

Data Abstraction. In all the studies the domain experts would start with
dictating the task and the data. In certain cases, the visualization designer
would ask clarification questions to understand the task or ensure that the
selected data was correct. For example, in experiment1, the visualization
designer asked, “Do we need to select the country as well?” and the
domain expert replied, “The dataset is only from Canada”. As a result, there
was a natural flow of communication between the two during this phase to
understand the task requirement.

Visual Representation Selection. During this phase if the visualization
designer had selected a representation for the first time, they would explain
it to the domain expert. In experiment 3 and experiment 4, the visualization
designers made use of the animations to break down the representation
into its’ individual components. In some cases, the visualization designer
would explain why they selected the particular representation. For example,
in experiment 1 the visualization designer explained “as the dimensions go
more than two it is better to use these new charts” and starts pointing to the
scatterplot and moved the finger towards the parallel coordinates.

Visual Mappings. After selecting a representation, the visualization
designers mapped the data to the available visual variables and in most

167

cases explained what was being mapped. The domain experts liked the
links between the visual variables and the data variables. One of them
commented in the interview, “The easy thing to understand was, oh you
make a connection from color to a certain column. That is very explicit.”
Another domain expert liked how the visualization changed when each
visual variable was mapped. ‘I also like the feature that your visualization
changed dynamically, you see the visual variable you mapped to.” The
domain experts suggested mappings to visualization experts in all the
experiments.

Visual Analysis. Only the parallel coordinate’s representation was explained
during analysis. It could be due to the fact that the other representations
were common. In experiment 3, after the visualization designer had mapped
the data to the treemap and was analyzing the data, the domain expert
asked what each rectangle meant, and the visualization designer explained.

Discussion
In general, using paired participants results in a natural continuous
conversation between the participants. Overall the participants liked
the interface of PairedVis and two visualization designers described
the experience as enjoyable. The domain experts easily understood
how to create representations. One domain experts said, “it was pretty
straightforward”.

The visualization designers in all the experiments made use of the sample
datasets to explain the visualization templates to the domain experts, and
in two cases also used the animations that show one visual variable at a
time. The domain experts in all the experiments requested for a different
representation, when the task requirement was not met and explained their
requirements in greater detail. For example, in experiment 4, the domain
expert said that I would like to group fatalities and injuries together. As a
result of such discussions, the visualization designer would look over the
thumbnail bar for representations and think before choosing a more useful
one. Then the data was mapped again and the analysis was performed
with the new representation. These steps would iterate until both of them
were satisfied with the visual representation and the results of the analysis.
Especially for Task3, in all the experiments the visualization designers
switched to at least 3 different representations.

The Analysis of our study support that PairedVis enables both the experts,
a domain expert and a visualization designer in sharing their knowledge.
PairedVis had facilitated the two experts with quick and simple interactions
in order to map data to different representations. A domain expert had
noticed this and said, “…you can instantly try out different charts, usually
for excel if you pick one chart, trying to change it to other things for same
data takes time but this one switching between charts, its design to actually
for people to use different charts.” Visual mapping was described as “quite
explicit” by a visualization designer.

168

Conclusion
The main aim of our research was to better support collaboration between
a visualization designer and a domain expert during visualization design
activities. Our overview on current literature in information visualization
processes and tools led us to think that domain specific visualization designs
are either created on paper or programmatically by visualization designers.
In this case, domain experts are limited to reviewing and providing feedback
on these designs. However, when the domain is simple, commercial
business intelligence tools help domain experts in creating visualizations
on their own. When the domain is complex, we proposed that they can
create visualization designs in collaboration with visualization experts.
Pretorius and Van Wijk [10] have suggested an exploratory approach to
creating prototypes in close collaboration with domain experts. However,
we propose the use of adjustable templates in order to explore and discuss
representations.

We elicited requirements for a tool that can facilitate both the domain expert
and the visualization designer in creating and discussing visualizations. We
found that existing tools are not designed to support collaboration between
a domain expert and a visualization designer. As result, we designed a tool,
PairedVis to support collaboration between the two experts. We conducted
an experiment in a laboratory study to investigate whether this tool can
support discussion between the two experts. Our evaluation supports that
collaboration between the two experts results in sharing knowledge and
expertise. Moreover, collaborative prototyping results in critique more
templates.

169

Constructive Visualization: A New Paradigm to
Empower People to Author Visualization

Samuel Huron, Alice Thudt, Bon Adriel Aseniero,
Tony Tang, and Sheelagh Carpendale

Introduction
During the past two decades, information visualization (InfoVis) research has
created new techniques and methods to support data-intensive analyses
in science, industry and government. These have enabled a wide range of
analysis tasks to be executed, which vary in terms of the type, and volume
of data involved. However, the majority of this research has focused on
static datasets, and the analysis and visualization tasks tend to be carried
out by experts.

In more recent years, social changes and technological advances have
meant that data have become more dynamic, and are consumed by a wider
audience. These social and technological changes give rise to multiple
challenges as most existing visualization models and techniques are
intended for experts, and assume static datasets. In spite of this, only a few
studies have been conducted to explore these challenges.

In this chapter, with my collaborators, I provide a pictorial overview of two
papers that address these challenges (Huron, Jansen, and Carpendale 2014;
Huron, Carpendale, et al., 2014). In these paper we define construction
as a design paradigm for non-experts to author simple and dynamic
visualizations. This paradigm is inspired by well-established theories in
developmental psychological as well as past and existing practices of
authoring visualization with tangible elements. We describe the simple
conceptual components and processes underlying this paradigm and a
preliminary study we employed to assess it. The results of this study confirm
that non-experts in InfoVis can create, update, and annotate a visualization
in a short period of time. Moreover, this study allowed us to articulate a
primary model of how people perform the authoring of visual mappings
using this paradigm.

170

Figure 1. Photo of a kid showing a construction made with Lego bricks.
Credit: Michael McCauslin.

Part 1. Constructive Visualization Paradigm

Design Challenges
Democratizing visualization authoring is challenging. Below we describe
our three main challenges we are considering:

Keeping it simple. It can be said that actions are simple and accessible if
they are similar to the actions we have been comfortable with since early
childhood. A good example of this is sketching, for which one of the best
advantages is, that we all can do it.

Figure 2. A sketch of a car drawn
by a 4 year old child. Copyright
Emran Kassim.

Enabling expressivity. We are looking for a creation process that provides
suffi cient freedom to enable people’s ability to express their own ideas.
Our ideal is to support the expressivity of sketching and the fl exibility of
digital tools by incorporating the concept of plasticity, or the ability to re-
model during the creation process.

Figure 3. Drawing of a bar chart
with different textures.

171

Incorporating dynamics. One of the biggest challenges in making the
creation of visualizations more generally accessible is that, thus far,
visualizations can only be made adaptable to data dynamics through
coding. By this we mean that the visualization can change in response to a
change in the data stream. However, coding remains, and is likely to remain,
a skill of comparatively few people.

Figure 4. An icon symbolizing “update.”

Three Design Paradigm to Create a Visualization
Previously in his talk “Drawing dynamic visualization” Bret Victor’s (Victor
2013) introduced three visualization design paradigms: Use, Draw, and
Code. Below, we will summarize these three approaches, and introduce a
new additional paradigm.

Using. The fi rst paradigm, using, refers to the possibility of pushing a
magic button in a software (Figure 5) which directly transforms a dataset
into a traditional, pre-coded visualization. This is a simple way to produce
visualization, if you know the location of the button and how it functions.
Moreover, when the data changes, the visualization gets dynamically
updated. However, this is not an expressive tool—you cannot personalize
the visualization.

Figure 5. Microsoft
Excel interface,
illustrating the using
design paradigm.

Drawing. The second paradigm of producing visualizations is to draw, either
by hand or by using a drawing software such as illustrator (Figure 6) (Walny
et al. 2012; Walny, Huron, and Carpendale 2015). In this case, the process
could be quite simple and very expressive, but it is not dynamic. If you want
to update the data visualized in the drawing, you will have to redraw most,
if not all of it.

172

Figure 6. Adobe
Illustrator interface,
illustrating the
drawing design
paradigm.

Programming. The last paradigm is coding (Reas and Fry 2007). Through
the use of a programming language, programmers can encode abstract
symbols (Figure 7) then compile and run their code to show the visual result.
This process is not simple, but it can handle dynamic data changes, and can
be very expressive.

Figure 7. Processing
interface, illustrating
the programming
design paradigm.

Summary
We can summarize these three approaches to get an overview (Figure 8):

• Using is simple, handles dynamic data, but is not very expressive,

• Drawing is simple and expressive, but does not handle dynamic data,

• And coding is not simple, but allows data dynamics, and is very
expressive.

All of these approaches are well studied. Grammel et al. (Grammel et al.
2013) recently surveyed the different ways to create information visualization.
If we classify all these papers among these three approaches, we get the
distribution shown in Figure 8. In this chapter, we present and describe
a new design paradigm, which addresses the three challenges: simple,
dynamic, and expressive, and has not been previously study.

Figure 8. Summary of the three main design paradigms according
to our design challenges.

173

A New Design Paradigm for Visualization: Constructing Visualization
We defi ne constructing visualization (Huron, Carpendale, et al. 2014) as
creating visualization by assembling components that represent data. To
defi ne this paradigm we presented tree main aspects:

• The historical inspiration
• The components and process
• The some real life example

Historical Inspiration

1. Frederich Froebel, The Invention of Kindergarten
Our fi rst source of inspiration is Frederich Froebel (Figure 9), the German
pedagogue who invented the Kindergarten in 1837 (Brosterman, Togashi,
and Himmel 1997; Manning 2005). Froebel’s challenge was to teach
mathematics to children who do not know to read and write. To solve this
problem he designed some building block toys called Gift (Figure 10). A
part of his pedagogical approach was to teach children that each block
corresponds to an abstract unit (Figure 11), and by manipulating the blocks,
they could process mathematical operations such as addition, subtraction,
and multiplication among others.

Figure 9. Figure 10. Figure 11.

Figure 9. Portrait of Friedrich Wilhelm August Fröbel. Picture in the public domain;
Figure 10. Picture of the Third Froebel Gift.Credit: Samuel Huron – Creative

Commons; Figure 11: Image from page 53 of
“A practical guide to the English kinder-garten”.

2. Jean Piaget, The Constructivism Theory
Our second source of inspiration is Jean Piaget (Figure 12) a Swiss
psychologist, who is known for research about children’s development
(Chapman 1988; Piaget 1989). Piaget used building blocks similar to the
ones designed by Froebel in his experiments (Figure 13). According to
Piaget, children construct most of their knowledge by manipulating, and
experimentation with physical objects. Piaget provided a solid theory
that helps us understand the learning stages during children’s cognitive
development.

174

Figure 12. Figure 13.

Figure 12: Photograph of Jean Piaget—Picture in PD; Figure 13: Sceenshot of a
Youtube video of a Jean Piaget experiment. Accessible online at: https://youtu.

be/0XwjIruMI94?t=27m51s.

3. Seymour Papert, from Constructivism to Constructionism
The third source of inspiration is Seymour Papert (Figure 14) and his
colleague Alan Kay. Papert was a MIT mathematician, computer scientist,
and educator. He built on top of the constructivist theories and extended
the idea of pedagogical manipulative materials to computer programming
(Papert and Harel 1991). Papert founded the “Lifelong Kindergarten Group,”
a research group at the MIT MediaLab (Figure 15). One of the major works
this group is known for, is the programming environment Scratch (Figure 16).
Scratch was inspired by Froebel’s methods, transforming the building block
idea into a visual representation of the “command block”. This approach
was so successful, the Scratch logic is now integrated in programming
interfaces of commercial products such as Lego Mindstorm.

Figure 14. Figure 15. Figure 16.

Figure 14. Portrait of Seymour Papert. Credit Rodrigo Mesquita; Figure 15. MIT
Medialab LifeLong Kindergarten logo; Figure 16. Command block from Scratch.

Some Right reserved by Andrés Monroy-Hernández.

Summary
From this three sources of inspirations, Frederich Froebel, Jean Piaget and
Seymour Papert we learned:

• That the understanding of abstract and mathematical concepts can
be developed through the manipulation of simple elements such as
wooden blocks. We also learned that this approach is proved to be
continually accessible and effective, as it has spread across the world,
and is still in use today. This meet our Frist design challenge: Simplicity

• That this approach also allows people to modify and understand
their constructions over time. This meet our third design challenge:

175

Dynamicity

• That this approach is highly creative and generative. This meet our
second design challenge: Expressivity

Components and Processes
In the following section, we describe the components and process of
constructive visualization.

The fi rst component is a token, which is mapped to a unit (Figure 17,
Co1). For instance, the blue square on Figure 17 could be considered as a
graphical token which maps to a single “yes”.

Figure 17. The components of constructive visualization.
Credit: Samuel Huron - Some right reserved.

The second element that needs to be defi ned is the token grammar and
vocabulary (Co2a, Co2b). The token vocabulary is the relation between the
different token properties and data properties. For instance, if I want to
self-monitor my consumption of apples against soda, the pink square can
stand for one soda and the blue square for one apple. The token grammar
contains the rules one can defi ne about the relationship between two or
more tokens.

To organize these tokens, we need to have an environment (Figure 17, Co3).
The environment is the space that provides constraints on how tokens can
be assembled together using the token grammar. The properties of this
space can include many different types of constraints such as the number
of dimensions (e.g., 2D or 3D), space limitations, grids, gravity, and others.

The last component is the assembly model (Figure 17, Co4). The assembly
model is the rules of the construction process. These rules are defi ned by
creating the visualization, and concern the spatial organization over time.

Process
The process for providing a constructive information visualization
environment is based on four steps:

P1: Environment initialization.

P2: Mapping data to “tokens”, and data properties to token properties.

P3: Assembling the tokens.

P4: Evolution over time.

176

Figure 18. The process of constructive visualization.
Credit Samuel Huron - some right reserved.

Real Life Examples
In this subsection we will present two real life scenarios, other examples can
be found in a previous paper (Huron, Carpendale, et al. 2014):

Otto Neurath (1882–1945) Michael Hunger, contemporary
Philoshopher Programmer
Otto creates the Isotype principles. Michael creates personal Infovis.

Example 1: Otto Neurath, Isotype Principle
Otto Neurath wanted to democratize statistics of socio-economics datasets.
For that, he created a specifi c type of visualization called Isotype (Jansen
2009; Neurath and Vienna 2009; Neurath 2009). The following are the steps
he used to create an Isotype visualization:

Drawing Tokens. First Gerd Arntz, Otto Neurath’s
graphic designer, draws pictograms to represent a
specifi c semantic type of data. These pictograms will
be used as tokens, and the symbol of the pictogram
defi nes its meaning.

Duplicate Tokens: Molding and Printing. To quickly
duplicate the pictograms, they used a mold. Using
this mold, they were able to produce as many
pictograms as they needed.

177

Duplicate tokens: Clipping. The pictograms are
then clipped to be discreet elements that can be
manipulated.

Composing. After clipping, the pictograms are
assembled on top of a white canvas. On the picture to
the left, you can see Marie Neurath, Otto Neurath’s wife,
positioning each pictogram into an assembly model.
You can also see in this picture, the frame that plays
the role of a two-dimensional assembly environment.
During this phase the assembly could be updated and
changed as necessary.

Photographing. Later, when they are satisfi ed by
the resulting composition, they take a picture of it
as seen on the picture to the left.

Printing and distributing. With this picture, you can
see a poster resulting from this process.

Let us analyse the different components of this visual representation. The
tokens are the following symbols:

tokens are the following symbols:

 = 1 car by 50 persons = 1 car by 50 persons
 = 1 car by 50 persons
 = 1 car by 50 persons

The assembly model follows a horizontal bar chart principle in which
each group of three lines represent a country, and each line represents
the distribution of a good whithin the country. The environment is a two-

178

dimensional canvas.

Example 2 : Michael Hunger, Personal Visualization
Michael Hunger is a computer engineer, he works on many different projects
and he is having troubles managing his time. As he explained on his blog,
(http://goo.gl/Qz554q) he has already tried software techniques such as
Outlook, Spreadsheets (Figure 19), as well as more tangible techniques such
as tally sheets, pen and paper to-do lists, sticky notes, or using a notebook.

Figure 19. Collage of different tools for personal time management, from left to
right, top to bottom: Outlook express interface, schedule overview with d3.js, pen

and paper, post-it, spreadsheet, tally sheet, and a personal notebook.

Finally, he decided to design his own solution out of Lego blocks. The
following are the steps he performed to create his solution out of legos:

Token Mapping: Time to size
First, he decided to map time
frames to the size of Lego™
bricks:
15 minute to 1 pin brick,
30 minutes to 2 pin brick
45 minutes to 3 pin brick
an hour to 4 pin brick.

Token Mapping: Color to
Project. Then, he mapped the
different project types into the
different colours of the bricks.

179

Token Mapping: Long Brick
to Days. Finally, he used long
coloured bricks to represent the
days of the week. Monday is red,
Tuesday orange, Wednesday
yellow, and so on.

Token Grammar. Michael self-
defi ned his own token grammar
to construct a visualization. He
mapped different dimensions of
the data to different attributes
of the tokens. Here, we can also
see that the environment is a
Lego board.

Environment of Assembly. Let
us simulate how Michael
constructs and updates
this visual and tangible
representation. It is 10 in the
morning, the Lego board is still
only contains the long coloured
bricks symbolizing the days of
the week.

Assembling the Tokens Over
Time. Michael arrives late and
spends an hour to read and
reply to his emails. The email
processing task is symbolized
by blue bricks. Hence, he
adds a blue brick on the brick
representing Monday.

Figure 20. (Left) A day of work in the simulation; Figure 21. (Middle) Two days of

work; Figure 22. (Right) A week of work.

180

Figure 23. The simulation of a day of work on Michael’s Lego
time management system.

This is how Michael tracks his time for Monday. Figure 23 reveals the actual
version of Michael time management tool. You can get more information on
his blog at the following URL: http://goo.gl/Qz554q.

Summary
We have introduced constructive visualization as a new paradigm, which
can help realize the democratization of information visualization. We
disclosed our historical and theoretical inspirations for its conceptualization,
and presented the components and process of constructive visualization.
Lastly, we presented two case studies of real-life examples, emphasizing
their constructive processes and components.

Most paradigms of visualization creation focus fi rst on creating data
representation, and then developing interaction to suit data needs and
tasks. The basic approach for constructive visualization is different. The
focus is on creating an interactive environment where people can assemble,
from modular data-linked units, visualizations that directly fi t their needs.

This paradigm reveals new perspectives on the visualization design process,
calling for:

1. New sets of possible design and experimental studies,

2. The development of guidelines for designing constructive
visualization environments,

3. And lastly, the creation of new tools for supporting constructive
visualization.

Part 2. Constructive Visualization: A Study

Introduction
The authoring of information visualizations by a wide audience has been
identifi ed as a major challenge by several researchers. For instance, in
2006 Johnson et al. declared in a NSF visualization research report that
“the goal is to make visualization a ubiquitous tool that enables ordinary
folks to think visually in everyday activities” (Chris Johnson, Robert
Moorhead, Tamara Munzner, Hanspeter Pfi ster, Penny Rheingans 2006). In
2012, 6 years later, Heer and Shneiderman wrote that “novel interfaces for
visualization specifi cation are still needed. [...] New tools requiring little to
no programming might place custom visualization design in the hands of

181

a broader audience” (Heer and Shneiderman 2012). Similarly, during his
keynote at the conference IEEE VIS 2014, Alberto Cairo emphasized the
importance of building tools for non-experts to create visualization (Cairo,
2014). These challenges were also raised by Brett Victor in his talk about
drawing dynamic visualization (Victor, 2013). In this talk, Victor summarized
visualization authoring in three approaches: use, draw and code. As a
response to these challenges, we proposed a new design paradigm called
constructive visualization in the previous part of this chapter.

However, all of these four approaches—using, drawing, coding and
constructing visualization—are specific ways to process visual mapping.
This process is an important element of the information visualization
reference model (Jansen and Dragicevic, 2013; Stuart K. Card, Jock D.
Mackinlay, 1999). The visual mapping defines the mapping of a dataset to
a visual representation. While research has focused on finding perceptually
efficient visual representations, the way humans perform visual mappings
themselves, is still a black box that needs to be opened and explored.

Our goals are to explore:

• Whether novice people in InfoVis can construct their own visualizations
using tokens.

• How these people are constructing their visualizations using certain
materials.

• The types of visualizations they creating.

To investigate these questions we ran an exploratory study where we asked
information visualization novices to create a visualization of a simple dataset
using tangible tokens.

Study Design
First, we recruited 12 participants from a variety of disciplines and educational
backgrounds. We made a specific effort to not select InfoVis experts,
avoiding people with backgrounds in visualization, human–computer
interaction (HCI), and computer science domains in general. Thus, we did
not study people in an HCI lab. Figure 24 summarizes the demographic
information of participants using a Bertifier visualization (Perin, Dragicevic,
and Fekete, 2014).

182

Figure 24. Visualization of the demographic distribution of our participant. This
visualization was created with Bertifi er (http://www.bertifi er.com) and freely

adapted to our needs.

Setup
We invited the participants to sit in front of a desktop like the one described
in Figure 25. The top of the desktop contained:

#1 A printed dataset.
#2 A box of tokens (token box).
#3 A note suggesting participants to map a single token to 25 units.
#4 A white canvas as the assembly environment for constructing a visualization.

Figure 25. Setup of study.

183

Dataset
We used an aggregated version of a bank account statement as our
dataset. The participant saw three months of expenses on a single sheet of
paper. All expenses were grouped into categories such as “amusement,”
“bar and restaurants,” “groceries,” etc. To simplify the participants’ data
processing, all values were rounded to the nearest 25. An update of the
dataset containing 1 month of expenses (November) was provided during
the experiment.

Figure 26: Screenshot of the fi rst three months in the dataset.

Token Box
The tokens were 25mm wooden square tiles. There were six colours, with
36 tokens per colour. The tokens were contained inside two boxes with four
compartments taped together on to the table. As seen on Figure 27, only
six compartments contained tokens of different colours.

Figure 27. A photo of the
token box, viewed from
above.

Tasks
We fi rst asked participants, to create a visualization based on the given
dataset (Figure 28). We then interviewed them after fi nishing the task. We
then gave them a new dataset and asked them to update their visualization
(Figure 29). Afterwards, we conducted a second interview. Lastly, we asked
the participant to annotate their visualization such that another person
would be able to understand it later (Figure 30).

184

Figure 28. Mosaic extract from the top camera of participant 1,
during the task CREATE.

Figure 29. Mosaic extract from the top camera of participant 1,
during the task UPDATE.

Figure 30. Mosaic extract from the top camera of participant 1,
during the task ANNOTATE.

2. Results and Analysis
All participants were able to complete the three tasks in a short amount
of time. They spent, on average, only 11 minutes to create, 6 minutes to
update, and 7.5 minutes to annotate the visualization. As seen on Figure 31,
while some participants simply recreated well-known visualizations such as
bar charts, others developed unexpected diverse visual mappings. Most of
the participants (10 out of 12) said that they would use a similar technique
in the future. We also got surprised as one of them said that she had already
used a similar approach with real coins to plan her future budget.

185

Figure 31. Mosaic of all the visualization produced by the participants (top
numbers corresponding to their ID) during task A (create), B (update) and C

(annotate).

How Did They Do That?
To answer this question, we analysed the videos taken during the study
using a qualitative data analysis approach. The coding of the video was
performed through several passes in an iterative process. We identifi ed 11
different subtasks, named after the logical task (WHAT), and grouped by
their underlying goals (WHY). In Figure 32, we classifi ed these actions into
three categories: construction, computation, and storytelling. Each of these
11 tasks require several actions in different combinations and in different
orders of execution. During the coding of the videos we observed a high
diversity of actions committed by the participants. This diversity indicates
that while people used the same actions, they did not adhere to the same
sequence.

Figure 32. Summary of the logical, mental and physical tasks.

Analysis
As seen in our results, the participants’ process of constructing visualizations
is pretty chaotic. However, we summarize the most common relationships
between the subtasks in this fl ow diagram (Figure 33). The mental tasks
are shown as purple circles and the physical tasks as blue circles. The grey
oblongs linking two circles represent possible co-occurring actions. Tasks
that impact the assembly model are marked with red circles. The grey
background rectangles illustrate the logical tasks.

186

Figure 33. Flow diagram representing the different microtasks performed by
participants. The arrows represent the most common paths taken between microtasks.

In Detail…

Figure 34. Participant 4, (1) fi rst loads the data on the canvas into tokens, (2) he
then organizes the red tokens into squared constructs, and (3) he extends the

organization he defi ned with the red tokens to all the others tokens.

Load Data. In Figure 34, the participant fi rst reads the dataset, then computes
the right number of tokens to grasp. These two actions are concurrent He
then selects the tokens colour and grasps the tokens. Then, he creates a
construct, in this case, a heap of tokens, just after he repeats these subtasks
for the next two months of the same category. These operations correspond
to the logical task called loading data. By processing this subtask, the
participant defi nes rules of assemblies that can be reused.

Figure 35. Part of the fl ow diagram concerning the logical task loading data.

Extend (Load Data). Extend refers to the task of applying existing rules of
an assembly to other data cases. This logical task is illustrated by Figure 34.
Between vignettes 2 and 3, the participant applies the assembly model he
defi ned for the red tokens to all of the other tokens and the rest of the dataset.

Build Constructs. In Figure 34, we can see how the participant organizes

187

each heap into a different type of constructs. The participant is building
squares to represent subunits for better readability. Two subtasks compose
this building operation, create and organize, and are a part of the building
construct task. Most of the time, the organize subtask is co-occurrent with
the move subtask, and the create subtask with the organize subtask.

Figure 36. Part of the fl ow diagram concerning the logical task “Building a construct”.

Organize. Sometimes the organization of tokens into a specifi c construct
happens in the hands of the participant, between the subtasks of grasping
and creating. We can observe this with participant 7 who grasped some
tokens with her two hands to organize the tokens into a 3d pile, and then
placed it on the canvas.

Figure 37. Part of the fl ow diagram concerning the subtask “Organize a construct”.

Combine Construct. In Figure 38, we can observe a participant that fi rst
merges a red sub-construct with another one. She then arranges the two
columns on her right to be closer to the rest of the tokens after aligning the
top of the two columns with the other construct. These three actions allow
combining constructs.

Figure 38. Part of the fl ow diiagram concerning the action relative to the logical
task “Combine a construct”.

188

Figure 39. Participant # combined
a construct over time. First
(transformation A1 to A2), he
changed the colour of three group
of tokens (red and yellow) into
purple, resulting in the aggregation
of these three categories into one.
Second (transformation A2 to A3), the
participant combined all the token
construct into one.

Figure 40.The participant changed the
token construct between task A (C1)
and task B (C2), while keeping the
same colour coding over time. These
two constructs represent the same
data but with different spatial confi gu-
rations: 2D and linear for (C1), and 3D
and stacked for (C2).

3. Discussion

Bottom-Up vs Top-Down Procedure
All the participants had their personal going back and forth between
different types of actions throughout the authoring process. However, we
observe two distinct classes of procedures.The most common one (10
out of 12), which we call bottom-up procedure (Figure 41), consisted of
participants starting from a simple data case, to progressively build higher
level structures for an axis or a category. The second one is called top-
down procedure (2 out of 12) (Figure 42). In this case, participants started
by positioning higher-level structures such as the dimensions and axis and
then populated them with data. Only two participants used it.

Figure 41. Participant 7 already defi ned the axis and colour coding before loading
the data. He used a top-down approach, fi rst defi ning the visualization model
then rendering it. A full video of this participant is accessible online on http://

constructive.gforge.inria.fr/#!videosmd.

Figure 42. Participant 9 fi rst played with the tokens and then progressively
constructed the visualization. She used a bottom-up approach, she defi ned the
visualization model while she is constructing the visualization. A full video of this

189

participant is accessible online on
http://constructive.gforge.inria.fr/#!videos.md.

How Information Visualization Novices Construct Visualizations
Although our study has inherent limitations, it is generalizable; our results
suggest that creating constructive visualization environments in which
people can assemble their own visualizations from tokens may be benefi cial
and merits further research. In 2010, Grammel, Tory and Storey conducted
an inspiring study (Grammel, Tory, and Storey 2010) with similar goals but
with a different setup, authoring tools, data complexity, and protocols. For
this reason, the results of these two studies are different and complementing
each other. In the previous study, Grammel identifi ed different barriers
relative to novices authoring of InfoVis, proper to their setup. In our setup,
the major barrier we observed—and on which participants commented—
was the initial transformation from the number printed on paper, to a
number of tangible tokens.

Internalization of Data to Token Mappings
We were interested in how far participants internalized the token mapping.
A good example of token mapping internalization in our day-to-day life
is the money. Do you think of a dollar bill as a piece of paper or as it
value? Do you think a coin as a piece of metal or as the value it stands
for? To investigate this further, we systematically asked our participant two
questions:

(Q1) “What did you manipulate during your construction process?”
and depending on their answer: (Q2) “What was the value (or
meaning) of [the declared object in Q1]?”

Figure 43. (Left) A Canadian one dollar coin – Credit: Kevin Dooley Some rights

reserved; Figure 44. (Middle) One and two Euro coins isolated on a white
background. – Credit: Image of Percy Some right reserved; Figure 45. (Right) An

American one dollar bill Credit: Thierry Ehrmann – Some right reserved.

They replied:

A. Half of them (6 out of 12) replied to Q1 by referencing the object
fi rst, then the data.

B. Four other participants spoke only about the object

C. Two replied with only the data or the data fi rst and then the object.

This result suggests that our participants have a clear awareness of the
coupling between the data and their tangible proxy.

190

Figure 46. Pie chart of the replies.
Blue for reply A, Red for reply b,
and green for reply C.

4. Implications

Exploiting Processing FLUENCY
Processing FLUENCY have been previously defi ned as “the subjective
experience of ease with which people process information” (Alter and
Oppenheimer 2009). The method we provided to construct visualization
was originally designed 200 years ago to teach mathematics to non-literate
kindergarten children. The result of this study showed that people without
specifi c skills in InfoVis can construct useful visualization, when they use a
method with for which they already possess fl uency. This implication opens
some questions such as:

• Will a constructive authoring tool implemented in a digital environment
provide the same benefi ts as the tangible version?

• How can we transform more complex InfoVis techniques into more
fl uent ones?

Figure 47. A young kid constructing a bar chart with building blocks is doing math
operations.

Tangible Constructive Design
Participants criticized several aspect of the wooden tiles, for instance they
accidentally destroyed parts of their construction during moving actions.
This could be addressed by using other materials. For instance, Lego bricks,
or materials with programmable properties (Figure 48). This raises some
question such as:

•Which material properties are better for supporting constructive
strategies?

•Which material properties are most effective?

•How does the complexity of programmable properties affect people’s
profi ciency with such environment?

191

Figure 48. From left to right - Firest pictures: A visualization made with Lego bricks,
Credit General Motors; an extract of the video “Claytronics - Physical Dynamic

Rendering” https://goo.gl/tgxtrB.

Summary
In summary, this study has several contributions. First, we demonstrated that
visualization novices are capable of creating meaningful visualizations in a
short period of time in a tangible, constructive environment. Second, we
opened the “black box” of “visual mapping” to present a fi rst preliminary
model. Third, we revealed many processes internal to this step, and
presented in a model. This study is also an empirical proof that supports
the new design paradigm we presented in the fi rst part of this chapter.
We expect that such research will help researchers and designers to create
tools, which support visualization non-experts in their future activities.

Conclusions
In this chapter, we presented a new design paradigm and an empirical
study of this paradigm. This paradigm is particularly suitable for information
visualization novices as it addresses the following design challenges:
simplicity, dynamicity, and expressivity. We fi rst defi ned this paradigm
by presenting its underlying components and processes, as well as our
historical inspirations for its conception.

To empirically explore this paradigm, we designed a study in which we
asked information visualization non-experts to construct a visualization
using this approach. The results of the study confi rmed our hypothesis:
in a constructive environment, information visualization non-experts can
create, update and annotate visualizations within a short period of time.
Moreover, these results allowed us to investigate how people perform visual
mapping—a phenomenon that has not been studied before. We presented
a preliminary model of constructive visualization, making it easier for the
research community to investigate and support this process for a wide
range of visualizations. We fi nished by presenting the implications that can
lead to future research and design.

192

An Approach to Automated GUI Testing

Theodore D. Hellmann and Frank Maurer

Introduction
Automated software tests are a foundation of effective software development.
By providing evidence for the correctness of development work that has
been done on a project, tests allow teams to confidently, quickly, and
repeatedly release software to end-users. However – inconveniently – the
type of software testing that most directly reflects how users will interact
with a system, graphical user interface (GUI) testing, is also the least stable
for use in automated testing environments. In this book chapter, we discuss
our approach to making automated GUI tests (AGTs) more compatible with
use in automated software testing.

GUIs are part of most modern software for the simple reason that they
make it easier for people to interact with a system – assuming that both
the system and its GUI are functioning correctly. It makes intuitive sense,
then, to simply test a system through its GUI to verify the correctness of
both simultaneously, but testing a system through its GUI is much more
difficult than testing a system’s code directly. AGTs work by interacting with
the system in a way similar to how users would interact with the system. An
AGT needs to locate a specific part of the application on-screen, interact
with it by triggering actions that a user could perform – like mouse clicks
and keyboard input – and then evaluate correctness based on what the GUI
displays onscreen as a result of these interactions. These actions are very
easy for a human to perform, but very difficult for an automated algorithm.

Creating and maintaining AGTs is very time consuming and expensive.
Every time the GUI is revised, AGTs that touch on these revisions may need
to be updated. It’s very likely that the GUI will need to change over time,
since this is the portion of the software that users interact with directly, and
their feedback will necessitate changes. Each change comes with a risk of
causing test failures – either due to changing the functionality of the system
or by changing the way in which tests need to interact with the GUI – and
the later causes overhead over and above normal test maintenance. AGTs
essentially navigate through a system in order to reach the functionality they
need to test, and any changes to the GUI that change this navigation will

193

cause test failures (see: Figure 1).

Even given the added cost, AGTs are still useful for evaluating whether a
system is correct from the point of view of its users because the test interacts
with the system the way a human user would. If an application is not tested
in the same way in which it will be used, errors that users are able to trigger
may slip through the testing process unnoticed and be released to end
users. Further, performing GUI testing on an application manually would be
unfeasibly slow and labor intensive. Based on this, we chose to investigate
how AGTs are used in practice and propose a methodology for integrating
AGTs into a software development process.

System under Test

Important Functionality

Point of Entry into
System

Test

Figure 1. Visualization of an AGT navigating through the GUI of a system to reach
important functionality. Imagine the red line as a sequence of interactions with

the GUI leading to the important functionality. Any changes in this navigation will
cause the test to fail.

In this chapter, we discuss motivations behind the use of automated GUI
tests in practice. Based on the results of this, we describe our methodology
for integrating automated GUI testing into an Agile development process.
Related work is discussed at the end.

Motivation for Automated GUI Testing
Researchers investigating GUI testing have been looking into solutions for
the various issues with GUI testing for many years and have repeatedly
described potential solutions to common issues with GUI testing (Hellmann,
2015). Despite this, these solutions have not seem to catch on in software
development organizations. In order to make our solution more likely to
actually benefi t practitioners, we began our study by actually interviewing
practitioners in order to understand how to tailor a solution to meet their

194

needs. We specifically focused on investigating, which uses of AGTs were
most important to practitioners and which issues prevented them from
actually benefiting from GUI testing. The results of these interviews are
presented here as motivation for what a successful approach to AGTs must
provide and can be used to evaluate how successful our approach is.

Semi-structured interviews were conducted with 18 participants who had
some amount of experience in the use of tools for the creation of AGTs.
However, we quickly noticed that participants with more limited experience
(less than one year) tended to focus on issues with specific tools rather than
with the process of GUI testing generally. Of course, this means that one of
the findings of our study was that the usability of many AGT frameworks is
a major barrier to adoption, but we wished to come up with a more general
perspective to AGTs not bound to specific tools. In order to focus on an
approach that is tool-agnostic, we focused our analysis on the 8 participants
with more than one year of experience. Full details on the study can be
found in the full report (Hellmann, et al., 2014). For the present discussion,
we provide a brief overview of results.

Our interviews showed that practitioners use AGTs primarily for two purposes:
acceptance testing and regression testing. Automated acceptance tests are
traditionally created in collaboration with the customer as an encapsulation
of expectations about how a feature should work. Automated acceptance
tests take the form of tests that operate at the system level to demonstrate
that a feature is working from the point of view of the system’s target users
– the use case described in the introduction of this chapter. Further, in
Agile development settings, acceptance tests tend to be written before
development work on a feature has begun. This is because acceptance tests
serve as a contract between technical team members and their customers:
when the acceptance tests for a feature pass, the feature should be working.
For our present investigation, then, we will make this a requirement for
AGTs: AGTs must be creatable before the system they are testing exists so
that they can be used as a specification of correctness.

Regression testing is the process of running the same test suite repeatedly
against a system over time to determine if it is at least as correct as the last
time tests were run. If at any point in time a test that was previously passing
begins to fail, this indicates that a regression error has been introduced
into the system. One of the crucial points is the rate of false positive results
– cases where the tests identify a failure in the system when none exists.
When this sort of failure occurs frequently, developers begin to wonder first
if the test itself is to blame rather than what regression error the failure
represents. From this, we draw our second requirement for a new approach
to AGTs: AGTs must have a low rate of false positive test failures so that
developers trust the results of test runs.

In order to make both of these goals possible, we propose an integration of
the creation and evaluation of AGTs into another process that takes place

195

before development and which is geared towards reducing the amount of
change required during the development process: user interface design.
GUI testing and UI design go together nicely since both processes are
aimed at verifying that the GUI is correct from the perspective of end-users.
Additionally, one can expect a collaboration between testers and designers
early in the process of creating a system to come up with GUIs that are
more verifiable, usable, testable, and stable than when those groups work
independently.

Driving GUI Development with Tests and Design
In short, we propose a process for systems development in which:

1. Interactive low-fidelity prototypes are created by designers

2. Usability evaluation is carried out with end-users using the prototypes

3. AGTs are created using the prototypes (potentially in collaboration
with end-users in the spirit of acceptance testing)

4. AGTs can be run against the prototypes to demonstrate functionality

5. AGTs, with slight modification, can be run against the actual GUI as
it is developed

Based on the requirements outlined in the previous section, we conceived
and evaluated a way to integrate the creation and use of AGTs into a design
and development process in order to promote their use by practitioners as
both acceptance tests and regression tests. By encouraging collaboration
between testers and designers, we hope to increase the testability of
GUIs early on by including testers as stakeholders in the design process.
By encouraging usability testing early in the design process, we hope to
increase the stability of the resulting GUIs after development, which would
also decrease the amount of maintenance effort that would need to be
expended on AGTs over time. Overall, this is expected to increase the use
of AGTs both as acceptance tests and as reliable regression tests – thus
addressing both issues raised in our interview study.

This process could be referred to as “graphical user interface design-driven
testing and test-driven development” but for simplicity we will use the
acronym UITDD.

Prerequisites for UITDD
Before UITDD can begin the project vision must be sufficiently clear.
Because UITDD will involve some up-front design – normally a practice that
is avoided in Agile software development – we will need to ensure that this
work is aimed towards the actual problem the project is intended to solve.
We recommend that the team carries out project visioning exercises to
ensure that the whole team understands what the goal of the project should
be and understands what a successful project would be able to provide
end-users with.

196

Building upon a solid project vision, requirements elicitation should be
performed in order to understand what features will be necessary to enable
end-users to accomplish the goals laid out in the project vision. This doesn’t
need to be done in exacting detail – as would be common in traditional
waterfall-style projects – but the main features of the system do need to be
clear enough to understand the prioritization of different features.

Based on the prioritization of the major features of the project, two things
can happen. First, a project roadmap, release plan, user story map, or similar
product planning tool can be developed in order to understand what the
tentative timeline for the project as a whole will look like. It’s important to
have this understanding in place because, without it, there’s too much risk
of building the wrong system. However, this should be understood as a
living document that can be easily changed throughout the project, as the
process of UITDD is designed to encourage learning about the project and
to understand changes users will need throughout the process.

Once this high-level understanding of the project as a whole exists, UITDD
proper can begin. The integration of design, testing, and development
helps to ensure we are building a high quality system.

Creation of Low-Fidelity Prototypes
Requirements elicitation focus in on the details of the features that will be
developed in the next few iterations. To assist with this process, storyboards
of prototypes should be used. Storyboards are sequences of sketches of the
user interface of a system that demonstrate how it would react to different
input from the user. Prototypes can be as simple as pen-and-paper sketches
(low-fidelity prototypes) or as complicated as sequences of linked web
pages (high-fidelity prototypes), but the key is that they should not look like
a finished system or take a lot of effort to create or change.

The purpose of low-fidelity prototypes is to evaluate whether the interactions
they describe are good ways of helping users accomplish functionality in
the system, and if users are presented with prototypes that actually look like
a finished system, this can encourage feedback about how the system looks
rather than about how the system functions.

Designers should cast a wide net with initial prototypes and create a wide
variety of interaction methods before narrowing in on a small number to
move forward with. Once the customers – in collaboration with the designers
– have decided on a prototype to move forward with, the prototype could
be translated from a paper-based low-fidelity prototype into an interactive
prototype, such as Moqups (moqups.com), Pencil Project (pencil.evolus.
vn), SketchFlow (microsoft.com/silverlight/sketchflow), or any other of the
number of similar existing tools. An interactive prototype is for our purposes
better than a paper prototype for three main reasons. First, it will allow
users to interact with the prototype on a computer, in the same way in
which they will interact with the actual product, and thus encourage them

197

to take usability evaluations more seriously. Second, it will force designers
to understand the complexity of the user interface they will be asking
developers to create and thus understand how difficult their designs will
be to realize. Third, it will result in the creation of a digital representation
of the system – such as a webpage linking together different pages of the
prototype – to be developed which can be used for the creation of AGTs.

Usability Evaluation with End-Users
Once the prototype exists, it can be used for usability evaluation (Buxton,
2007) (Barnum, 2002). Usability evaluation can either be done with experts –
heuristic evaluation where experts look over the system for well-understood,
general usability issues – or with end-users. Methods like heuristic evaluation
tend to identify minor problems (at least when skilled designers created
the prototypes), so we recommend performing evaluations with end-users
(Jeffries, et al., 1992). Working with actual using techniques like Wizard of
Oz evaluation tends to be more valuable in terms of discovering issues
which would have necessitated changes to the system down the line
(Jeffries, et al., 1992). We recommend creating high-fidelity prototypes for
these evaluations as without an interactive prototype the results can be
inconsistent due to fatigue on the person running the evaluation, making
results difficult to compare between participants (Bernsen, et al., 1994).

However, with a digital, interactive version of the prototype, issues with the
reliability of the “wizard” are not an issue, since the wizard is replaced by
a simple system linking different pages of the prototype to one another,
as for example with ActiveStory: Enhanced (Hosseini-Khayat, et al., 2010).
Additionally, this sort of usability testing can be performed with a much
larger number of users, since the prototypes can be posted online to
collect statistical information about the way users interact with the system
in order to allow designers to focus in on the more important issues with
the system (Hosseini-Khayat, 2010). And, as mentioned earlier, the digital
representation of the prototype as a series of linked web pages will make
it very easy to interact with the prototype for the purpose of creating tests.

At this point in time, in parallel with the evaluation of the system with real
end-users, designers should also consult with testers and developers.
Testers will need to give input on the general testability of the design while
developers will need to do the same with implementation details. Again, it’s
easy to design a system that can end up being technically difficult to test
or implement.

Create AGTs From Prototype
One of the most important side-effects of creating a digital, interactive
prototype is that capture-replay tools (CRTs) will be able to pick up
interactions with this type of interface. CRTs work by monitoring a user’s
interactions with a GUI and recording them in sequence so that they
can later be replayed automatically against the system. Normally, this is
performed against an existing system for the purpose of regression testing:

198

if the system is working when a test is recorded, any changes to the system
that break the replay of the recording will indicate a problem with the
system. Examples of common CRTs include Visual Studio’s Coded UI Tests
(msdn.microsoft.com/en-us/library/dd286726.aspx), Selenium (seleniumhq.
org), and Sikuli (sikuli.org).

A CRT doesn’t require any sort of specialist knowledge to use. This is
extremely important because it means that non-technical customers can
actually participate in the process of creating acceptance tests. Strictly
speaking, customers should be the ones creating acceptance tests or
acceptance criteria for functionality because they are the ones to actually
approve/accept the software in the end, but in practice testers will usually
create acceptance tests based on their understanding of the system
functionality. With a CRT, customers themselves can create acceptance
tests by simply interacting with a prototype and can verify that the test is
behaving as they expect by watching the execution of a replay of the test.

There are other benefits to the use of a CRT in this scenario.

Demonstrating Functionality to Developers
A recording of how a user wants to interact with functionality can be
replayed against the prototype to demonstrate how interactions should
work. This can make it a lot easier for developers to understand what they’re
being asked to implement because they can see a visual representation of
functionality. In the experiment described in the following section, this was
a very common use of these recorded tests.

Perform Test-Driven Development of the Actual System
By modifying the tests in very simple ways, the way CRTs locate the
elements they use in order to accomplish a test can be altered in order
to target the same elements in a different interface. Most CRTs work by
creating a dictionary of elements of the user interface so that they can be
looked up simply during testing. This may be done either using a keyword
– a unique name assigned to each element – or using a heuristic search
– in short, looking for an element in a GUI that matches a certain set of
criteria. Two things can be done to make use of this property of CRTs: either
the dictionary can be altered so that the test will be able to find elements
in the actual system’s GUI that match the corresponding element in the
prototype, or the actual GUI as it is developed can be created to match the
information in the prototype. In reality, a combination of these two methods
will probably be needed.

The benefit of synchronizing the lookup information in the prototype and
the actual system is huge because it enables test-driven development
(TDD): tests can be recorded from the prototype and then run against the
actual system as it is developed in order to ensure that it meets all of the
expectations expressed in the prototypes. This allows the developers to
develop functionality, to be sure that the system they are developing is

199

functioning correctly at all points in time, and to gain other benefi ts of TDD
(see, for example: (Jeffries, et al., 2007)).

Iterate and Increment
Of course, as with any Agile process, this approach to design, testing,
and development is intended to be both iterative and incremental. The
extra design and testing work are not intended to lead to a completely
fi nished feature in order to prevent changes, but rather to lead directly to
the implementation of releasable functionality early in production and to
encourage changes to the system early in the process, when they will be
less expensive to undertake. Design should not be done for the system as
a whole – with the exception of perhaps overall interaction themes – but
rather for each feature. As design work on a feature fi nishes and testing and
development begin, the design team would move on to working on the
next feature – but always focus on single features at a time. In this way, the
system is built up incrementally, one feature at a time.

An example of this general process follows in the next section and a
controlled experiment of UITDD is presented in the section afterwards.

An Example of Testing Portion of UITDD in Action
In order to demonstrate the process for UITDD, assume we intend to
develop a calculator application. Full results of this example were fi rst
reported in (Hellmann, et al., 2010). For now, we are focusing on basic
addition functionality, as this is the functionality that our hypothetical users
are most interested in. In order to demonstrate how addition would work,
we come up with a paper prototype which might look something like Figure 2.

Figure 2. Prototype for calculator interface.

After performing Wizard of Oz style evaluation with potential end-users, the
designers proceed to make a digital version of the prototype. This digital
version is based around a use case scenario for the functionality, titled
“adding fi ve and nine should result in fourteen” and with a corresponding
set of steps for users to follow in evaluations. This digital version was made,
as a proof-of-concept, using ActiveStory: Enhanced. Figure 3 shows several

200

pages of the prototype after interactions with a user. The yellow areas show
elements of the prototype that are selected by the user, while the arrows
show transitions between these pages as a result of these interactions. So,
by clicking on various parts of the prototype, the user will be presented
with different pages so that it looks as though s/he is interacting with a
functioning system.

Figure 3. Storyboard of a test sequence. Highlighted areas represent mouse clicks
in the fi rst four states and the fi eld to be verifi ed in the last state.

Now that the prototype exists and we have a scenario as a basis for testing,
testers can record a test demonstrating our “adding fi ve and nine should
result in fourteen” scenario. This test can be replayed against the prototype
to demonstrate to developers how the actual calculator should behave, and
it can also be run against the actual calculator as the developers implement
this addition functionality to see if they are done with development. In this
example, LEET (leet.codeplex.com) was used as the CRT for testing. The
test ended up looking like Figure 4.

Figure 4. Test for the calculator’s simple addition use case scenario.
Each line represents a single interaction with the GUI.

Because LEET works with keyword-based UI element lookup, during
development all that was necessary to make these tests work against the
actual system was to make sure that their AutomationID – their unique
keyword – matched those of the corresponding element in the prototype.
Due to the way LEET works, now all that was needed was to change the
START command to start the actual application instead of the interactive
prototype. Development can now take place on the actual GUI, with the
developer able to run the test repeatedly throughout development to see if
the application is meeting the specifi cations expressed in the test.

201

Figure 5. A complete interface. The original test still passes.

In order to see if this approach was usable by people who actually do
GUI development, a controlled pilot experiment of this methodology was
conducted with three developers.

Figure 6. One page from the SketchFlow prototype of ExpenseManager.

Controlled Pilot Experiment with GUI Developers
In this pilot study, three developers were given an interactive prototype,
tests that ran against the prototype, a GUI with no logic implemented, and
tests that ran against the GUI and asked to implement logic for the GUI.
The GUI was for an application, ExpenseManager, that, when completed,
would include functionality for entering expense reports, clearing expense

202

reports, saving expense reports, modifying expense reports, and viewing
totals for all saved expense reports. Full results of this pilot experiment are
reported in (Hellmann, et al., 2011).

In this pilot evaluation, the tests were still created in LEET. However, the
interactive prototypes were created using SketchFlow.

Participants were given one hour in which to implement four features:
clearing entries, modifying saved entries, saving entries, and ensuring
that multiple entries could be saved. Completeness of implementation
was based on whether the tests for those features passed. All participants
were able to implement functionality for clearing and saving reports. No
participants were able to implement functionality for modifying saved
reports, and only one participant was able to implement functionality for
saving multiple reports. Based on these results, it would seem that it was
possible for UITDD to be used to develop some features, but, as there was
no comparative sample group, we cannot conclude that it is better than
other development methods.

Participants also completed a post-experiment interview to evaluate how
useful they felt UITDD would be in practice. All participants indicated that
they found UITDD to be at least “useful” (3 on a scale of 1 to 5) and indicated
that they were interested in seeing if they could apply the technique to
their own work. Again, full results of this pilot evaluation are reported in
(Hellmann, et al., 2011).

Concluding Remarks
This chapter presented an overview of an approach to integrating design,
testing, and development of GUIs in order to promote better customer
communication, better collaboration between testers and developers, and
meet the needs of real-world practitioners in terms of providing a way to
conduct acceptance testing and regression testing using AGTs. Additionally,
we provided a method that makes it possible to make use of CRTs in this
process, which would make it easier to integrate customers and end-users
into the testing process. The method also makes it possible to perform test-
driven development of GUIs.

Interestingly, if a team is already creating prototypes, conducting usability
evaluations early in the design process, and using AGTs as part of their
test process, this methodology won’t require many changes to their design,
test, and development processes. Because of this, we believe that it has
potential for adoption in practice.

203

Agile Product Line Engineering
Case Study: Vertical & Horizontal Displays

Yaser Ghanam and Frank Maurer

Introduction
Variability management plays an important role in defining and handling
the parts of the system that may vary. This is often needed when a number
of similar – yet not identical – systems are to be derived from a common
platform to satisfy different needs. This software paradigm is called Software
Product Line (SPL) engineering (Clements, P., and Northrop, L., 2001).
Companies consistently report that SPLs yield significant improvements.
Some reported reductions in the number of defects in their products and
cuts in costs and time-to-market by a factor of 10 or more (Schmid, K.,
and Verlage, M., 2002). Commonality between systems is what makes SPLs
economically effective; whereas variability is what makes mass customization
possible. SPLs deal with similar systems as a family of products sharing a
library of core assets. But since customer requirements are rarely exactly the
same, shared assets have to accommodate a certain degree of variability.
For instance, the customer of an intelligent home system should be able
to choose a subset of components that fulfills her wants. It should also be
possible for customers to tailor certain aspects of these components to
meet their specific needs. A security module, for example, offers different
techniques to secure access control such as PIN protected locks, access
by magnet cards and finger print authentication. When choosing to have
a security system component, customers may select one or more of these
options.

Problem Statement
Traditionally in SPL engineering, variability analysis is conducted upfront
during a phase called domain engineering. A comprehensive analysis is
conducted to specify the commonalities and variations in the prospective
SPL. Commonality and variability analysis is concerned with determining the
requirements of the members of the software family, and defining how these
requirements may vary. This includes determining all sources of variation
(i.e. variation points) as well as the allowed values (i.e. variants). After the
domain engineering phase comes the application engineering phase. As
a starting point, application engineers use the reference architecture, the

204

reusable artifacts, and the variability profile – that were all defined in the
domain engineering phase. Based on the specific requirements of a certain
product, application engineers make decisions on what variants should be
selected for each variation point. The outcome of this phase is an instance of
the system that represents a specific product. Ideally, application engineers
should provide feedback to domain engineers pertaining to problems and
limitations of the current architecture or variability definition.

For agile organizations, the focus has been to develop software systems that
satisfy their current customer base, without worrying about best practices to
handle variations of requirements in the future. Recently, the agile community
has been investigating ways to scale agile up to the enterprise level rather
than the team level like in (Leffingwell, D., 2007) and (Shalloway, A., Beaver,
G., and Trott, J., 2009). This will eventually require that agile organizations
find a way to adopt SPL practices to manage variability in customer
requirements in a more effective way. However, adopting SPL practices in
their traditional form is challenging. For one, agile organizations foster a
culture of minimalism in upfront investment and process overhead including
documentation. This is in direct conflict with traditional approaches to SPL
engineering where a whole phase, namely domain engineering, is dedicated
for domain and requirement analysis upfront. Moreover, especially during
domain engineering, documentation is deemed essential to communicate
knowledge to application engineers. Secondly, agile organizations depend
heavily on fast delivery as a mechanism for quick customer satisfaction
and feedback, which is too difficult to achieve when a domain engineering
phase is to occur before delivering any products. Thirdly, the flexibility
to accommodate changes in requirements and new customer requests
is an important characteristic of agile teams. This characteristic will be
compromised if two separate processes – namely domain engineering and
application engineering – are introduced, because it may slow down the
feedback loops between teams.

Goal
Our goal is to reconcile conflicts between traditional SPL engineering
and agile software development. We argue that for agile organizations to
adopt a SPL approach, a reactive – as opposed to proactive – framework
is more befitting. This chapter presents a framework that shall allow agile
organizations to incrementally and reactively construct variability profiles for
existing and new systems. The framework leverages common agile practices
such as iterative software development, refactoring, continuous integration
and testing to introduce variability into systems only when it is needed.

The rest of this chapter will be structured as follows. First we review related
literature. Then, we describe the proposed approach. After that, we evaluate
our approach using a case study of a real experience. Finally, we discuss the
advantages and limitations of our approach.

205

Incremental and Reactive Variability Management
In our research we stress that for an approach to fit well with agile principles
and practices, being incremental and reactive is key. By “incremental”, we
exclude big-bang transitional approaches. And by “reactive”, we exclude
proactive approaches in which a great amount of upfront speculation is
required. The quest for an incremental and reactive approach to establishing
and managing product lines is a relatively new phenomenon. For one,
organizations did not want to throw away their investments in legacy
systems and start all over again. Also, for many organizations the transition
to systematically managed variability in their systems was too big a change
if they were to follow the strict domain-then-application engineering model.

Kruger (Kruger, C., 2002) contributed ideas and commercialized a tool to
ease the transition to software mass customization. The main idea is that
domain engineering and application engineering should not be separate.
Their tool utilizes the concept of separation of concerns to realize variability
in software systems. The tool is closed source and not available for academic
evaluation. Reactive approaches, with the support of tools like the one
in (Kruger, C., 2002) has been reported to require orders of magnitude
less effort compared to proactive approaches (Buhrdorf, R., Churchett,
D., and Krueger, C., 2003). Clegg et al. (Clegg, K., Kelly, T., McDermid,
J., 2002) proposed a method to incrementally build a SPL architecture in
an object-orientated environment. The method provides useful insight
into realizing variability in an incremental manner, but does not discuss
how to communicate variability from the requirement engineering phase
to the realization phase. The aim of our work is somewhat similar to
the abovementioned efforts. However, we differ in that we are not only
concerned with realizing variability in a system. Rather, we are interested in
the process of managing variability as it evolves in an agile context, as will
be detailed later.

Agile Product Line Engineering
Agility in product lines is a fairly new area of research. In 2006, the 1st
workshop on agile product line engineering was held as part of the 10th
international SPL conference (Cooper, K., and Franch, X., 2006). The
workshop aimed at bringing researchers from the agile community and the
SPL community to discuss commonalities and points of variation between
the two practices. The theme of the discussions in that workshop was around
how feasible it is to integrate the two approaches. One of the presented
efforts was the iterative approach proposed by Carbon et al. (Carbon, R.,
Lindvall, M., Muthig, D., and Costa, P., 2006). This approach is based on
PuLSE-I (Bayer, J., Gacek, C., Muthig, D., and Widen, T., 2000) which is
a reuse-centric application engineering process. The proposed approach
gives agile methods the role of tailoring a product for a specific customer
during the application engineering process. The approach does not discuss
the role of agile methods in the domain engineering phase. In a different
venue, Hanssen et al. (Hanssen, G., and Fægri, T., 2008) described how SPL
techniques can be used at the strategic level of the organization, while agile

206

software development can be used at the medium-term project level. Also,
Paige et al. (Paige, R., Xiaochen, W., Stephenson, Z., and Phillip J., 2006)
proposed building SPLs using Feature Driven Development. They assert
the method worked well when giving special considerations for the product
line architectural and component design. While these efforts are interesting
attempts to combine concepts from agile software development and SPL
engineering, their goal is different from that of our research. While their
goal is to find ways to introduce or enhance agility in existing SPLs, our goal
is to enable agile organizations to incrementally and reactively build and
manage SPLs by adopting frameworks that align well with agile principles
and practices. Our goal goes hand in hand with the recommendations of
McGregor (McGregor, J., 2008) who presented an interesting theoretical
attempt to reconstruct a hybrid method. He concluded that competing
philosophies of the two software paradigms make their integration
difficult. But he asserts that the two can be tailored under the condition
that both should retain their basic characteristics. In our research, we try
to tailor variability management to fit within an agile context such that the
advantageous characteristics of SPL practices are attained and the agility of
software development is not deteriorated.

THE PROPOSED APPROACH
This section will present the proposed approach to manage variability in a
reactive manner using agile practices. The recommended process involves a
number of steps, namely: eliciting new requirements, conducting a variability
analysis, updating the variability profile, refactoring the architecture, running
the tests, realizing the new requirements, and finally running the tests once
again. This is an iterative process that repeats whenever new requirements
are available. Each one of the steps is discussed in detail in the following
subsections.

A. Eliciting New Requirements
This is the first natural step in any software development process.
Traditionally – and especially in the case of SPL engineering – this is a fairly
heavyweight process, because it involves domain analyses to predict what
requirements may be needed in the future. In agile software development,
it is sufficient to get only the available set of requirements and divide them
into work items that can be achieved in 2- to 4-week iterations. Speculation
is to be avoided as much as possible. In our approach, we adopt the agile
way of requirement elicitation. We also use a customer-driven elicitation
process. This means that unless something is actually requested (or needed)
by a known customer, we do not invest into incorporating it in the product
line/application system.

B. Variability Analysis
Variability analysis is traditionally conducted upfront in the domain
engineering phase. Elicited requirements are analyzed in terms of what they
share in common, and in what aspects they may vary. Sources of variations
are determined, and they are called variation points. The allowed values

207

for these variation points are also determined, and they are called variants.
In our approach, we avoid a one-shot upfront variability analysis, simply
because it does not fit within the iterative nature of requirement elicitation
in agile methods. Rather, we conduct a variability analysis every iteration
between the current requirements in the system and the newly elicited
requirements.

During variability analysis, we use lightweight techniques to determine
the commonalities and variations between the new requirements and the
existing ones. Although we do not specify a certain technique to conduct this
analysis, we recommend the use of a simple issue-implication table that lists
all the issues that may cause variability in the system, and their implications
in terms of variability. In each iteration, the expected outcome of this step is
a list of changes to the variability profile. This includes new variation points,
new variants for existing variation points, and new abstraction of common
aspects. In Section IV, we use a case study to illustrate in detail how this is
done in a real setting.

C. Updating the Variability Profile
By variability profile we refer to the list of all variation points in the system
and their variants. They are usually expressed in a formal representation
or using a feature model (Kang, K., Cohen, S., Hess, J., Novak, W., and
Peterson, A., 1990). In this chapter, we use this simple notation to illustrate
the idea:

Variation Point X = {Variant A, Variant B}
Variant A = [feature1,feature2, feature3]
Variant B = [feature1`,feature2`,feature3`]
Where: {} implies OR grouping; [] implies AND grouping.

After the variability analysis step in each iteration, we update the variability
profile with any new variation points or variants arising due to the new
requirements (in cases where there are no changes to the variability in the
system, we may not need to do that). It is important to keep a variability
profile for the system to ensure that all aspects of variability are traceable
to code artifacts and that they are communicated well to all stakeholders
through and after the development process. Variability profiles are also
used to explicate any dependencies and constraints between variation
points and variants. In (Ghanam, Y., and Maurer, F., 2010), we explain in
great detail how to maintain variability profiles using feature models and
executable acceptance tests.

D. Refactoring the Architecture
Using the refactoring techniques, the architecture has to be refactored in
order to accommodate the new variability. For example, new architecture
layers can be introduced to abstract common aspects, and other layers can
be specialized to handle variable aspects. It is important to note that the
goal of this step is to refactor the architecture to be ready to accommodate

208

the new version of the variability profile, and not to realize this variability.
The actual realization of that variability happens at a later step. For example,
suppose a feature x existed in the system before the current iteration. If
feature y in the new requirements is just another variation of feature x, then
a new variation point is defined. Although we have two different variants
x and y, at this point we only consider the existing, not the new, variant.
Thus, the architecture is refactored to accommodate a variation point with
the variant x. This is important because we would like to separate the side
effects of refactoring from those of adding new functionality.

E. Running the Tests
To make sure the refactoring process in the previous step did not have
any side effects, we run all the tests in the system. This includes executing
automated unit tests and acceptance tests as well as running all manual
regression tests (usually used to test user interfaces and hardware related
functionality). If a test fails, this means the refactoring process needs to
be fixed, undone or redone to make this test pass again. We should not
proceed to the next step until all tests are in a passing state.

F. Realizing the New Requirements
Having refactored the architecture to be able to realize the new variability
(if any), in this step developers implement the new functionality. The
developers should produce test artifacts either before (using test-driven
development) or after writing the production code.

G. Running the Tests (again)
This step is similar to step E. All tests for the new functionalities as well as
the older ones have to be run in order to make sure the new changes are
actually verified and validated, and that the old functionality is not impacted
by these changes. When all tests pass, a new iteration of the process can
take place when needed.

CASE STUDY

A. Experience Context
The application we will discuss throughout this chapter is called eHome.
It is a software system to monitor and control smart homes. Generally, the
interface of the application consists of a floor plan representing the smart
environment to be controlled, a number of items that can be dragged
and dropped on the floor plan, and a set of graphical user interface (GUI)
controls. A screenshot is shown in Figure 1.

Interacting with eHome occurs in two modes, namely:

(a) user mode which allows the dwellers to obtain information about
climate variables in the home such as temperature, humidity, CO2 levels
and other sensory information, check the current status of certain devices
in the home such as lights being on or off, change the status of devices

209

such as turning lights on and off, keep track of items in containers such
as a fridge or a medicine cabinet using RFID.

(b) designer mode which allows the users to add devices to be monitored
and controlled, drop an icon of the device onto the fl oor plan and attach
it to the actual device, add sensors to get climate information, add
containers (e.g. medicine cabinet) and add items to the containers (e.g.
pill bottles).

Figure 1. eHome application.

Initial Development. The abovementioned features were all requested by
an industrial partner we have been working with for some time. The initial
request was to deploy eHome on an HP TouchSmart PC which has a single-
touch vertical display. However, actual development of eHome was done
on normal PCs with different screen dimensions and no touch capabilities.
When we deployed eHome on the HP machine (which happened frequently
because we had a testing HP PC onsite), we often needed to adjust certain
scaling factors to fi t the HP wide screen. We also realized that some decisions
that had been made during development on the normal PCs needed to be
revisited. Examples are:

• The size and design of some GUI elements made it challenging
to interact with eHome using a fi nger touch because the latter is
much thicker and less accurate than a mouse pointer.

• One event in eHome was triggered by a right-click which, on a
touch-screen, did not make sense.

210

New Technologies. As we went along, we wanted to deploy eHome on a
large-scale SMART DViT Table with an older version of the SMART SDK. A
later request from our partner was to deploy eHome on a digital tabletop
they had recently purchased. Specifically, it was the New SMART Table
which supported multi-touch input and had a newer version of the SMART
SDK. Later on, we obtained a Microsoft Surface and we decided to include
it within the hardware platforms that we should support. As more platforms
were supported, more decisions were revisited and the software design
underwent drastic yet incremental changes. These changes were mainly
driven by the two factors we mentioned in Section 1: technical issues and
usability issues. Examples of such issues include:

• Three different SDKs that dealt with touch point input, one for
each hardware platform.

• Conventional GUI elements like menus and tabs assumed a single
orientation (vertical).

Sources of Variability in eHome. The technical and usability issues were not
the only sources of variability in eHome. In fact, the first source of variability
was business-driven. Smart homes vary widely with regards to what smart
devices exist in the home, and what kind of monitoring and controlling
is requested by a given customer. This variation in requirements often
results in delivering a different application for each smart home. However,
in spite of the differences between these applications, they share a lot of
underlying functionality and business logic. Therefore, it is better to think of
these applications as a family of systems that are somewhat similar yet not
identical – which is the general understanding of what a Software Product
Line (SPL) is. In this chapter, we will not discuss SPLs in terms of business-
driven variability – but we will focus on technical- and usability-driven
variability due to the utilization of vertical and horizontal displays.

B. Using the Approach
When dealing with a new and fast-changing technology like digital
tabletops, uncertainty about the future can be high. This in turn might
render useless any efforts to speculate these needs. In the development of
eHome, we avoided huge investments in upfront work. Instead, we followed
a bottom-up, evolutionary approach to develop and maintain the SPL.
We incrementally embraced new variations as needed, and allowed our
common platform to evolve gradually. The following sections will discuss
this matter in more detail.

In the discussion to follow, each section talks about one variability aspect. For
each aspect, we analyze the issues we encountered and their implications
on our system, and then we describe our approach to contain them.
Although the examples we provide are specific to our system, this does
not deteriorate the generality of the analysis or the proposed approach
– because we believe that researchers and practitioners in this field will
encounter similar issues and implications that can generally be resolved

211

using the same approach.

Variability within Vertical Displays. By vertical displays, we refer to the
normal PCs that were used by developers to develop eHome as well as the
HP TouchSmart PC on which eHome was initially deployed. The differences
between these two groups were issues related to the mouse-versus-touch
input. Table 1 describes these issues and their implications.

Table 1. Variability between a normal PC and an HP Touchsmart PC

(a) (b)
Figure 2. (a) part of the vertical slider is blocked by the body of the fi nger.

(b) the horizontal slider solves this issue.

As mentioned earlier, the development for normal PCs and HP TouchSmart
PCs was the initial stage in the evolution of eHome. At that stage, the
architecture of eHome looked like the one in Figure 3a. The Presentation
layer included all the view-related elements, whereas the UI Controller
managed the communication between the Presentation layer and the Data
Object Model. The Hardware Controller was responsible for communication
between the actual hardware devices with the Model or the UI Controller.
External Resources included the hardware devices, XML confi guration fi les,
and web services.

At fi rst when we only considered the fi rst issue (right-click vs. press-&-
hold) as a source of variability, a conceptual layer was added to refl ect this
variability as shown in Figure 3b (previously, input was managed within the
Presentation layer). The common platform included everything but the
Input Manager where variability occurred. One variation point was defi ned
as “input mechanism” with the two variants “mouse” and “touch.” Later,
when the other two issues were to be managed, variability penetrated down

212

to the Presentation layer as shown in Figure 4. That is, the variability profi le
we had so far could be described as:

Input Mechanism = {mouse, touch}
Mouse = [scale factor x, vertical slider, right-click]
Touch = [scale factor y, horizontal slider, press-&-hold]

(a) (b)
Figure 3. eHome architecture (a) before and,

(b) after considering variability at the Input Manager layer.

Variability between Vertical & Horizontal Displays. To migrate eHome from
a vertical surface to a horizontal one, we initially deployed eHome on a
horizontal display without any modifi cation to understand the differences.
After a number of usability observations and going back and forth between
the vertical and horizontal settings, we realized a raft of issues. Table 2 lists
these issues and their implications on the migration process. In this chapter,
we do not argue that these implications improved usability as this is yet to
be appraised. The point, however, is that usability issues introduced new
sources of variability. At this stage, we realized new variability occurring at
the same two layers of the architecture. Not only did we have to go back
and modify the variability we had previously defi ned in the Input Manager,
but we also needed to explicate more variability in the Presentation layer.
All the other layers were left intact. The updated variability profi le included
the following:

Input mechanism = {mouse, single touch, multi-touch}
Mouse = [right-click], Single-touch = [press-&-hold],
Multi-touch = [press-&-hold, two-touch-zooming, gesture support]
Layout = {normal PC, TouchSmart PC, digital tabletop}
Normal PC = [scale factor x, vertical slider, conventional GUI controls,
textual feedback]
TouchSmart PC = [scale factor y, horizontal slider, conventional GUI
controls, textual feedback]
Digital tabletop = [scale factor z, circular slider, redundant GUI controls,
text-less feedback]

213

Figure 4. Architecture after considering variability at the Presentation layer.

Variability within Horizontal Displays: In the previous sections, we discussed
variability due to differences between vertical displays. We then discussed
variability due to the migration of eHome from a vertical display into a
horizontal one. This section will discuss variability that was due to differences
between horizontal displays. By horizontal displays, we namely refer to three
hardware platforms: SMART DViT Table, New SMART Table, and Microsoft
Surface. As illustrated in Table 3, we dealt with three different SDKs, two
of which were different versions from the same vendor. The fi rst tabletop
on which eHome was deployed was the SMART DViT Table. We utilized
the dual-touch capability of this table by adding a feature that allowed the
user to place two touch points on the fl oor plan to zoom in and out. This
kind of interaction required the hardware platform to support at least two
simultaneous touches, which made the interaction irrelevant to the previous
hardware platforms. For this reason, we chose not to include this interaction
with the rest of the interactions in eHome that were common to all platforms.

Rather, a specialized controller was introduced in the UI Controller layer
to manage all communication between eHome and the touch handlers
in the SMART SDK, as shown in Figure 7 – A. By this separation, it was
easier to plug this feature in and out. The new controller was responsible
for managing three events, namely: TouchDown, TouchUp and TouchMove.
In case the touch events were part of a zooming interaction, the specialized
controller will handle the zooming. Otherwise, the touch events were
rerouted to mouse events we had previously defi ned in the UI Controller
for the previous platforms in order to maximize code reuse and avoid code
redundancy.

214

Figure 5. eHome on a horizontal display has redundant GUI elements to support
multiple orientations.

Figure 6. Circular slider to control light intensity.

Figure 7. The evolution of variability due to differences in the SDKs.

215

The second step was deploying eHome on the New SMART Table. The New
SMART Table came with its own SDK, and the technology was different from
the older table. Therefore, a new specialized hardware controller was also
created to manage communication between eHome and the touch handlers
in the new SMART SDK. At this stage, we had two different controllers one
for each table. These controllers, however, shared common aspects such
as the main triggering events and the zooming interaction. These common
aspects were abstracted in a new layer we called “Multi-Touch Library” as
shown in Figure 7 – B. The new layer was abstracted in a way so that it was
completely agnostic to the target hardware platform – all specificities were
kept in the specialized controllers.

Later on, this abstraction served well in accommodating the new digital
tabletop – MS Surface. It only took one day’s worth of work to deploy
eHome on MS Surface, because all we needed to do was create a new
specialized controller to communicate with the Surface SDK, while all other
aspects were managed by the Multi-Touch Library. Figure 7 – C shows the
final organization. As was done before, variability was evolved to include a
new layer, namely the UI Controller layer. The following variation point was
added to the variability profile:

Multi-Touch SDK = {SMART DViT Table, New SMART Table, MS
Surface}
SMART DViT Table = [old SMART SDK], New SMART Table =
[new SMART SDK], MS Surface = [Surface SDK]

DISCUSSION
In the previous sections, we discussed an approach to reactively manage
variability in systems using agile practices. We also reported a case study
where we used the approach to manage variability in an application that was
to be deployed on a number of different hardware platforms. In this section,
we discuss the advantages and limitations of our approach as learned from
the case study.

A. Opportunistic Reuse of Code and Test Artifacts
In the case of eHome, about 60% of the code (production and testing) is
reused amongst all platforms. This figure could even be higher for systems
that have a thinner presentation layer than the one in eHome. Maximizing
reuse is desirable because it lessens the time and effort to produce new
products and maintain existing ones. For instance, if the underlying
technology for a certain feature (e.g. item tracking) changes, we need to
make the proper modification in the common platform only once. Then we
re-instantiate different products for the five different platforms we support.
Also, say a vendor produced a new digital tabletop technology. All the work
we need to do is at the UI Controller layer. The common platform can be
used as is without any changes. However, this flexibility to change, adapt
and reuse is achieved through a good understanding of the variability profile
of the product line – which makes explicating and managing variability

216

essential.

B. Explicating and Managing Variability
Adopting a SPL practice provides a systematic approach to think about and
handle variations in the family. That is, before deciding to support a new
digital tabletop platform, we need to know what is different about the new
platform that cannot be supported by the existing product line. If there is
any difference, then decisions need to be taken on where in the architecture
this variation should be accommodated and what impact it will have on other
platforms in the family. Without having an explicit variability profile of the
SPL, taking such decisions becomes more difficult and is accompanied with
higher risks. More importantly, with the variability profile the instantiation
process of different products can be formalized by looking at each product
in the product line as a function of the variation points. That is, any product
P in the family is formalized as:

P = f (vpa,vpb,…) = f ({v1a,v2a,…}, {v1b,v2b,…}, …) Where vp: variation
point, v: variant, {}: OR operator

For instance, let’s consider the variability profile of eHome. To produce a
product that is specific to the HP TouchSmart PC, we need to specify the
variants as:

Input mechanism > Single-touch = [press-&-hold]

Layout > TouchSmart PC = [scale factor y, horizontal slider, conventional
GUI controls, textual feedback]

Or: PTouchSmart PC = f (input mechanism, layout)
 = f (single-touch, TouchSmart PC)

This formal representation is then fed to the SPL through a configuration
file or any other mechanism in order to start the instantiation of a specific
product.

217

Issue
Horizontal displays are, typically, physi-
cally larger than vertical ones.

Horizontal displays deal with multiple
touch points not only single touch
points or mouse clicks.

Conventional GUI elements like but-
tons, menus and tabs were oriented in
a top-down fashion, which for a hori-
zontal surface did not seem natural be-
cause people sit on different sides of
the table.

Feedback to the user was provided us-
ing a status bar at the bottom of the
screen, which was not suitable for a
multi-oriented surface (i.e. horizontal
display).

When using a slider control, vertical
and horizontal sliders seemed coun-
terintuitive if there were people sitting
around the table (e.g. if you go up in
a vertical slider, it seems as if you are
going down for a person sitting oppo-
site to you).

Some features were not easy to use for
everybody around the table because
the UI controls were closer to a certain
part of the screen.

Readability of text on the horizontal
display was limited because of the pre-
sumed top-down orientation.

With multi-touch capabilities, horizon-
tal displays provided new interactions
that were not possible on vertical dis-
plays (This was specific to our case –
new versions of the HP TouchSmart
PCs support dual-touch interactions).

On a big scale tabletop, drag-and-
drop became difficult due to the phys-
ical limitations on the reach of an arm.

Implications
A new scaling adjustment factor is defined for UI
objects to make them bigger, and hence easier to
interact with, on larger displays.

This new input mechanism needs to be incorporated
into the Input Manager layer as a new variant.

The conventional GUI elements were replaced by
panels available on each of the four sides of the
tabletop, as shown in Figure 5. Instead of one Exit
button on the top left corner of the screen, an Exit
button was added on each corner of the tabletop.
The “change mode” button (user/designer) was re-
moved. Instead, the change of mode on the digital
tabletop happens automatically.

Alternative ways to provide feedback were used.
For example, when a certain operation executes
successfully, the corresponding icon on the surface
glows.

A circular slider was used with clearly flagged ON/
OFF positions, as shown in Figure 6. Regardless of
where you sit around the table, if the handle of the
slider is moving towards the ON button, then the
intensity is increasing and vice versa.

For deleting an object, instead of a single trash can
on the bottom right corner of the screen, if the user
touches an object while in the designer mode, the
user has the option to drag it to any of the trash cans
distributed on the corners of the screen.

The horizontal interface includes far less text than
the vertical one. Descriptive icons and UI controls,
animations, as well as visual cues like pulsation or
glowing are used to replace text.

On horizontal displays, it was made possible to zoom
in and out of the floor plan using two finger touches.

Gestures were made available as additional (not sub-
stitutional) ways of executing certain features. For
example, to delete an object, one can use a scratch
gesture.

Table 2. Issues leading to variability between vertical and horizontal displays.

218

Table 3. Differences between the SMAR DViT Table, New SMART Table,
and MS Surface.

C. The Ability to Form Combinations
One more advantage of the systematic treatment of variability is the ability to
combine different variants to come up with diverse products. For example,
suppose we want to support the new HP TouchSmart PC that enables two
simultaneous touches. We can come up with a new combination of variants
to add the zooming behavior:

Input mechanism > Multi-touch = [press-&-hold, two-touch-zooming,
gesture support]
Layout > TouchSmart PC = [scale factor y, horizontal slider, conventional
GUI controls, textual feedback]

Or:

PNew TouchSmart PC = f (multi-touch, TouchSmart PC)

That is, by choosing a different variant for a given variation point, we ended
up with a different product for the new platform. Constraints are usually
defi ned to fi lter out invalid combinations.

We understand that some of these advantages are inherited from the
SPL practice itself. However, it is imperative to point out that using our
iterative approach allows organizations to realize the same advantages in
a way that is more cost effective (because it is lightweight) and less risky
(because it minimizes speculation), and with a faster return on investment
(because systems are continuously delivered as opposed to waiting until
the application engineering phase).

Limitations
The main limitation of our approach is that there is no clear defi nition
of the roles needed in the different steps. For example, who in a typical

219

agile organization should conduct the variability analysis? Can developers
assume the responsibility of updating the variability profile? This is vital
because variability analysis and profiling require a wide knowledge of
existing requirements in the system. Therefore, a developer who only
worked on a certain aspect of the system may not be qualified for this role.
A second concern we had about the proposed approach is the amount of
discipline needed to implement the approach successfully. For example,
the approach relies on the premise that tests are written for all features in
the system and that sufficient test coverage is available. In our case, eHome
had an automated testing coverage as high as 90% of the model code. We
also defined a suite of regression tests to be conducted manually to test
UI and hardware related issues. We are not sure what the consequences
are if good testing practices are not present in the organization. A more
systematic evaluation is needed in order to draw more reliable conclusions
on the advantages of our approach as well as its limitations.

Conclusion
The general goal of our research was to reconcile conflicts between
traditional SPL engineering and agile software development. This chapter
presented a framework that allows agile organizations to reactively construct
variability profiles for existing and new systems. The framework leverages
common agile practices such as iterative software development, refactoring,
continuous integration and testing to introduce variability into systems only
when it is needed. We showed, by example, how to use the proposed
approach, and we discussed the advantages that can be realized, and the
limitations that may hinder successful adoption of the approach. Future
work includes evaluating the approach in an agile organization to form a
better understanding of the practicality and feasibility of the approach.

220

221221

BUILDING
INFRASTRUCTURE

FOR DIGITAL
SURFACES

222

223

Building Infrastructure for Digital Surfaces

Nicholas Graham, Queen’s University
Carl Gutwin, University of Saskatchewan

I
ntroduction
SurfNet’s Theme 3 focused on creating tools, frameworks and
system infrastructure for software engineers to rapidly develop
applications for surfaces. The motivation for carrying out this
research was the substantial gap between the needs of surface
applications and development tools: for example, operating

 systems provide little support for key interaction techniques such
as multi-touch input and gesturing, and many software architectures do
not support basic surface issues such as combining multiple devices and
displays in a single application. As a result, researchers and developers
were often forced to re-implement basic interaction techniques for every
application.

In this theme, we carried out explorations of how to simplify the development
of surface-based applications, particularly those involving multiple surfaces,
multiple users and multiple surface types. This theme’s organization uses a
reference architecture for surface-based systems which has five layers, of
which the middle three represent the core work areas of this theme.

More than forty SurfNet projects investigated infrastructure for surface-
based applications. Several projects were primarily resident in other themes,
but list the development of infrastructural requirements as part of their
goals – this approach was taken to ensure that the infrastructure developed
in the project matches the needs of application developers. Research
has been carried out on each of the three main service layers. Concrete
tools have been developed at the basic services layer (e.g., the EquisFTIR

224

toolkit or the Haptic Puck Toolkit). At the middleware layer, we explored
the design space of tools and APIs enabling multi-surface development.
Our approach relies on creation of both special-purpose infrastructure (e.g.,
the iOSRemoteConnector), as well as more generic networking techniques
(e.g., the .Networking GT toolkit). At the user-interface service layer, we
have explored the next generation of user interface widgets applicable to
multi-surface applications. A diverse set of projects was carried out at this
level, from the use of synthesized audio to improve workspace awareness, a
proximity toolkit for detecting peoples’ positions around surfaces, and the
libjtouch toolkit for bringing touch-based input to the Java language.

We now survey specifi c types of infrastructure developed in the theme.

• Basic Services: Includes basic abstractions for low-level surface hardware,
such as projector tiling and input processing.

• Middleware: Network support for multi-surface applications, which in-
volves issues such as abstracting distributed systems, allowing program-
mers to treat MSEs as single surface, and dynamic recruitment and use of
available surfaces.

• User Interface Services: User interface toolkits at the surface level, which is
built on the results of Theme 1 (Humanizing the Digital Interface: Departure
From Desktop Computing). For example, this layer involves multi-user wid-
get sets, abstractions for rotation and orientation, and generalized pointing
and selection techniques for surfaces.

Multi-Surface Environments
Multi-surface environments (MSEs) are composed of a number of devices,
such as digital tabletops, large shared displays and personal tablets.
MSEs are designed to allow people to work together effectively, allowing
sharing, collaboration and private work. The goal of an MSE is to allow
people to fl uidly move between devices depending on the style of work or
collaboration that they are performing.

The diffi culties of developing MSEs can be seen in the numerous examples
developed in SurfNet. The C4i Emergency Operations Centre (Calgary)
and the MACCH Coordination Hub (Waterloo) both provide support for
emergency operations, providing digital tables and large shared displays
for collaboration as well as tablets and personal computers for private work.
In both cases, a major technical challenge was the real time processing and
display of data from disparate sources. Researchers at Calgary developed
the C4 programming language and API to address these problems.

In Queen’s OrMiS environment for simulation-based training and in
Calgary’s SkyHunter system for visualizing geological information, the key
technical problem was ensuring the consistency of different views provided
by different surfaces. Several technologies were developed in SurfNet to
aid the connection and synchronization of views in MSEs. .Networking
GT (Saskatchewan) provides basic networking features specialized for
collaborative systems. Janus’ Timelines model (Queen’s) eases the sharing

225

of time-sensitive data between surfaces. Web-technologies, as described
below, played a major role in connecting surfaces, through Saskatchewan’s
web-application framework for multi-surface environments (WAMS),
Calgary’s REST and JSON-based IntAirAct, and Carleton’s PanUI for web-
based deployment of multi-surface applications.

An important aspect of multi-surface interaction is the localization of
surfaces in physical space, such as in TerraGuide’s use of a tablet as a magic
lens over a shared tabletop for terrain exploration (Queen’s). Researchers
at Calgary developed the SkyHunter toolkit that allows a Kinect camera to
track the positon of handheld surfaces in real-time.

Web Technologies
One of the main technology changes over the course of the SurfNet project
was the establishment of the World-Wide Web as a platform for full-
scale application delivery. As a result of this advance, SurfNet researchers
explored ways in which surface-based applications can be organized and
provided using web technologies. Although different native platforms
have support for multitouch surfaces in large and small devices, there are
numerous practical advantages to targeting web browsers as platforms
for application development. Using this approach, applications need
no installation process, and can be developed once for a wide range of
devices. For example, researchers at Carleton University have developed
several surface-based applications for decision support that run entirely on
the web, and have captured their knowledge in a new web architecture
for distributed surface applications (the PanUI toolkit). The toolkit brings
together existing JavaScript libraries and provides an extension framework
to integrate diverse devices into our distributed web application for surface
applications.

Other SurfNet research has explored the performance of web-based
applications. One of the main requirements for multi-surface and multi-user
applications delivered over the Web is for reliable and efficient network
communication, but little was known about the new networking approaches
that appeared in web browsers during the time of the SurfNet project (e.g.,
AJAX Comet and HTML5 WebSockets). Researchers at the University of
Saskatchewan showed that web-based networking performs well and can
support the communication requirements of many types of real-time multi-
user applications. In another project between Saskatchewan and Queen’s
University, researchers explored the problem of what happens when the
various devices and users of a multi-surface application become temporarily
disconnected, and developed the DiscoTech toolkit that enables application
developers to handle disconnection in ways that preserve the user’s
experience in the application.

Group Awareness
Awareness of the presence, locations, and activities of the other members
of a group is recognized as an important part of real-world collaboration,

226

and has been extensively studied in the area of Computer-Supported
Cooperative Work. SurfNet researchers carried out several projects to
extend our understanding of group awareness to situations where people
collaborate on tables, multi-surface environments, and distributed surfaces.
At the architectural level, researchers at Saskatchewan and Cornell
Universities developed the OpenMessenger framework which structures
multi-surface applications around the assumption that individual behaviors
occur in anticipation of and in response to the behavior of others.

At the interface level, several projects have been carried out. Researchers
at the University of Waterloo built the Event Timelines system to support
situation awareness in tabletop environments that involve automation,
allowing groups to perceive changes in the system, comprehend them,
predict future events, and, ultimately, make optimal decisions. Other
systems have focused on capturing the information available in gestures
above a table surface and showing it at remote tables. The KinectArms
toolkit (Universities of Saskatchewan and Calgary) captures and isolates
arm images using a depth camera, and shows the arms on remote surfaces
– allowing richer gesturing and pointing over tables. Finally, SurfNet
researchers also explored the viability of sound effects as an awareness cue
on tabletop systems, and produced a toolkit for generating dynamic sound
using granular synthesis.

Proximity Toolkit
An important insight to arise from SurfNet is that interaction with surfaces is
not limited to touch. For example, as seen in the SkyHunter and TerraGuide
projects discussed earlier, the relative positions of surface devices can be an
important part of the interaction. Researchers at Calgary have developed
the foundational underpinnings of how proximity to surfaces can moderate
interaction, allowing for example a television to configure its interface
based on who is near to it. The proximity toolkit has been developed and
publicly released to enable development of surface-based applications
which consider proximity of users and other surfaces. The toolkit has been
widely adopted internationally. Examples of its use at Calgary include the
proximity-based universal remote controllers, devices that can control
literally anything that they are close to. At Saskatchewan, researchers have
shown how body-based input can be used to create a variety of application
styles controlled by physical motions performed in the proximity of surfaces.

Game Development Frameworks
Digital tabletops naturally enable co-located collaboration, and so provide
an opportunity to bring traditional board games to the digital realm.
Example tabletop board games investigated in SurfNet include Pandemic
(Queen’s and Waterloo) and Dominion and Pax Romana (Waterloo). There
has until now been little support for creating board games for digital
tabletops, however. Researchers at Waterloo have created the Tabletop
Board Game Framework that extends the Unity game development engine
to better support board games. The framework includes touch-based

227

widgets for common board game features such as scorekeeping and
shuffling and dealing cards. Beyond traditional board games, researchers
at Saskatchewan have explored in their GAMS framework how to support
the development of multi-surface games where the location of the surfaces
is part of the game. GAMS is accessible to developers through its use of
web technologies. Finally, large touch displays (such as tabletops) provide a
natural environment for the monitoring of complex distributed multiplayer
games, such as massively multiplayer online roleplaying games. McGill’s
tabletop monitoring tools demonstrate how surfaces can support the back-
end operation of such games.

Enriched Interaction Toolkits
Several projects in SurfNet involved the development of infrastructure
to support techniques for enriching interactions on surfaces. These
projects range from programming APIs to novel techniques. For example,
researchers at the University of Calgary developed C4, an API to support
creative coding and enhanced expression on multi-touch devices; the
system provides a prototyping language suited for the rapid development of
expressive mobile applications. A similar approach, but designed for multi-
touch control of music, was seen in the JunctionBox system. In the more
focused domain of idea generation, researchers at Queen’s University built
MACS On Top, a surface-based tool that allows small groups of designers
to collaboratively draw and edit diagrams, rapidly supporting creation
and comparison of many design alternatives. Several other projects have
developed infrastructure that supports techniques from SurfNet’s Theme
1. For example, researchers have built reusable components that support
interactions at different proximities (Calgary), visualizations of hands above
a surface (Saskatchewan), novel scrolling techniques for radiology (UBC),
and pointing-based command selection (Saskatchewan).

Conclusion
This theme has made two broad contributions to the state of practice in
creating surface-based applications and multi-surface environments. First,
we have identified the types of infrastructural problems faced by developers
of this kind of application, and second, we have developed concrete
software architectures, APIs and toolkits that help resolve these problems.
This is captured by the reference architecture shown above. Examples of
basic services included detection of proximity of users and surfaces and
tools capturing the positions of users’ arms over a table. Considerable
research has been performed in SurfNet on middleware, driven largely by
the need to support MSE development. As we have seen, a particular focus
has been on the development of tools based on web standards to simplify
the development of distributed systems dynamically composed from a set
of surfaces. Finally, user interface services include interaction techniques for
visualization of earlier application states on tabletop-based applications.

While the reference architecture has helped to conceptually unify the work
performed in this theme, we found it best to provide tools focused on

228

specific application domains and development contexts rather than try to
provide a single unified tool for surface development. This was appropriate
since, for example, tabletop games are appropriately developed using the
Unity game engine, whereas tools created in collaboration with companies
such as SkyHunter and C4i more appropriately adopted the companies’
own development environments. We see great promise going forward in
the use of web technologies as a means of providing surface development
tools in a platform-agnostic manner, and this theme’s work has laid the
foundations for such further work.

229

Society of Devices Toolkit and Projected Pixels

Sydney Pratte, Teddy Seyed, Alaa Azazi, Edwin Chan,
Yuxi Wang, and Frank Maurer

Introduction
Multi-surface environments (MSE) are becoming increasingly popular in
research today due to their ability to enhance application interactivity,
group collaboration and an inherent “coolness” factor. There is a broad
variety of devices and sensors available that can form the basis for MSEs.
Devices range from small wearables up to multi-touch wall screen displays.
MSEs are examples of of the ubiquitous computing concept. Ubiquitous
environments allow people to access and share information continuously
through the environment across different devices. Spatial awareness of a
ubiquitous environment is a system’s ability to understand the location and
orientation of people and devices in a space. Spatial-awareness is derived
from the sensors, which are either embedded in the environment or in device
devices inside the environment. Challenges arise with how information and
tasks can be performed effectively across different devices, which have
different degrees of spatial-awareness (Seyed et al., 2012).

Past research into ubiquitous environments has generally focused on the
types of interactions performed by people and the devices (Weiser, 2001)
using proxemics to define the interaction spaces (Ballendat et al., 2010;
Greenberg et al., 2011). However, these approaches are limited in real world
setups due to the difficulties in creating a multi-surface environment. Many
development kits use complex software and hardware setups and do not
support multi-sensor or cross-platform devices (Houben and Marquardt, 2015).

The Society of Devices (SoD) Toolkit (or SoD Toolkit, http://sodtoolkit.com)
was developed to help mitigate the software and hardware limitations of
previous spatially-aware ubiquitous environments (Seyed et al., 2015). The
primary research goal was “to allow for novel explorations of different types
of multi-device, spatially-aware (through multi-sensor fusion) ubiquitous
environments that can be augmented with a multitude of newer sensors
and device platforms” (Seyed et al., 2015). To achieve this goal, the toolkit
uses a modular architecture allowing developers to use multiple sensors
with off-the-shelf technologies to create a spatially aware ubiquitous

230

environment. With this style of architecture, developers can easily integrate
additional modules with future technologies. The SoD Toolkit includes APIs
for several different platforms including iOS, Android and Windows and
web-based systems including HTML5, Node.js and Javascript. Allowing
for a wide variety of devices to communicate in an everyday ecology. The
toolkit also offers methods of prototyping without needing any hardware
setup for quick testing even if hardware is unavailable.

In this chapter, we present the SoD Toolkit including its key features and
architecture. Next we describe a real world application in Emergency
Response that utilizes the key features of the Toolkit. We then demonstrate
the flexibility of the Toolkit by describing a project that integrated projection
feedback into the ubiquitous environment.

Related Work
The SoD Toolkit is built off of prior work on proxemic interactions, multi-
device interactions and application programming interfaces (APIs) and
toolkit design (Seyed et al., 2015). Greenberg et al have richly explored
proxemics used in ubiquitous environments, looking at spatial relationships
between objects and users, specifically applying five proxemic dimensions:
orientation, distance, motion, identity and location (Greenberg et al., 2011).
Greenberg et al also looked at the use of sensors to track users and devices
in a space to understand the differences in explicit and implicit interactions
(Ballendat et al., 2010). This group of researchers also discovered many
challenges faced in proxemics including privacy and security, connecting
different devices and providing meaningful feedback for interactions
(Marquardt et al., 2012). Research into proxemics interactions in ubiquitous
environments was a motivation for creating SoD Toolkit as a platform for
integrating technologies within a space.

The different devices in today’s technical ecology (e.g. smartphones,
tablets, smart-watches) leads researchers to explore how information or
content can be moved across these devices (Seyed et al., 2012). Moving
content within a multi-device space has been investigated in a number of
ways. Rekimoto designed a ‘pick-and-drop’ technique where a pen is used
to transfer information from one device to another synchronized across
multiple computers (Rekimoto, 1997). Another example of a synchronized
multi-device interaction is Hinckley’s method of bumping or stitching tablets
together (Hinckley, 2014; Brumitt et al., 2000) and Lucero’s pinching gesture
to share content (Lucero et al., 2009).

Multi-device interactions are directly influenced by proxemic and spatially
aware technologies (Chen et al., 2014). For example Marquardt et al
explored a gradual engagement pattern that mapped inter-device proximity
for different types of interactions (Marquardt et al., 2012). Wilson and Benko
used spatial awareness for different interactions between and on physical
surfaces in the LightSpace project (Wilson and Benko, 2010). These are only
a few examples of different interactions found in research, the SoD Toolkit

231

easily allows developers to explore new and yet to be looked at forms of
interactions (e.g. a smart watch and a tabletop).

A related area of research is in the development of multi-device toolkits.
Many toolkits have focused on web-based interfaces for multi-device
interactions, such as Conductor (Hamilton and Wigdor, 2014) and Panelrama
(Yang and Wigdor, 2014) and others (Chi and Li, 2015; Konig et al., 2009;
Schreiner et al., 2015). XDStudio on the other hand uses a GUI builder for
multi-device applications (Nebeling et al., 2014). One of the most well
known toolkits in this area of research is the Proxemity Toolkit, which gathers
spatial data from various tracking sensors for larger ubiquitous environments
(Marquardt et al., 2011). With its high-end tracking system, this toolkit is
ideal for research prototyping however it is not appropriate for real-world
applications (Nebeling, 2014). The SoD Toolkit is similar to the Proxemity
Toolkit and the XDKinect (Nebeling, 2014). XDKinect is a toolkit that uses a
single Microsoft Kinect sensor to enable device interactions and proxemics.
SoD Toolkit offers support for prototyping and building multi-device and
multi-sensor applications for creating ubiquitous environments with a focus
on off-the-shelf sensors and everyday devices. In addition, our source code
is also freely available to download as open source (http://sodtoolkit.com).

SoD Toolkit
In this section, we provide an overview of the SoD Toolkit. We discuss some
of the architectural components such as the locator and the communication,
then we cover the client SDKs available in SoD Toolkit and fi nally the
visualization tool used for creating ubiquitous environments. A diagram of
the system architecture is provided in Figure 1.

Figure 1. Overview of architecture.

232

Locator Services
The locator service is the central hub that fuses all spatial data from the various
sensors and devices in the environment (Seyed et al., 2015). The Locator
Service receives raw positional data from connected sensors and devices
and converts the device-based coordinates into a common coordinate
system of the room, creating a common picture of the environment and
allowing all devices in the area to be aware of the entities around them
and their relationships in the space. The entities that are tracked by the
Locator Service include devices (with orientation), sensors and the users in
the space. All entities are mapped to a 3D common coordinate space.

The Locator Service is implemented in an event-driven design and the
clients choose which events from the locator that they want to subscribe
to. For example, for proxemic interaction a wall display application can
subscribe to an event that watches for when a user is within a specific
distance from it or if other devices are pointing at it (Seyed et al., 2015).
The Locator Service also tracks data point entities. Data points are physical
locations in the environment where virtual data can be “attached”. Data
points can be created dynamically in both code and in the Visualizer tool
(see below). Similar to the other entities in the space, a data point can also
have proxemics ranges set where different interactions can take place. For
example, if a user is in range of a data point they could perform gestural or
device-based interactions with the data.

Communications
Communication for SoD Toolkit is built into the Locator Services as the central
hub. All devices communicate with the up, providing sensor information
to it and receiving callbacks for subscribed events from it. The module is
implemented in Node.js and follows the client-server style architecture.
Node.js was chosen due to its scalability and efficiency (Seyed et al.,
2015). All messages from the server to the client libraries are in standard
JSON format and use the WebSocket protocol, allowing for bidirectional
communications with less overhead then traditional HTTP methods. The
modular design of SoD Toolkit allows for easy extension of functionality with
limited development effort.

Client SDKs
There are two main functions for the client SDKs, they provide the Locator
Services with the spatial-awareness data from the sensors on the devices
and they provide the native application platform for development. The
sensors that are currently being used include the Microsoft Kinect, the Leap
Motion and Apple’s iBeacon. In addition if a device has built in sensor data
(e.g. accelerometers, gyroscopes) then this information is also sent to the
Locator Services.

233

Figure 2. Sensor Fusion using multiple Kinect sensors. (a) 2 uncalibrated Kinect
sensors (overlapping) showing skeletons tracked in the environment. (b) Interface
for calibration. (c) Properly calibrated environment with overlapping Kinect areas

(Seyed, 2015).

The Microsoft Kinect (version I and 2) sends skeletal data, position, identity
and gestures from the users in the space at a rate of 30 skeleton frames per
second (Seyed et al., 2015). Since the Kinect sensor has a limited tracking
range (1.2m to 4.5m), multiple Kinects track users through sensor fusion,
improving tracking quality as well as reducing occlusion issues. To integrate
data from multiple Kinects, we need to map their device specifi c coordinate
system into a common coordinate system. This fusion is accomplished
through three calibration steps with two Kinects at a time:

1. an object is placed in the common view of the sensors to pair,

2. a point on this common object is chosen in two views (one per
Kinect) and

3. one Kinect’s vector is translated to the other Kinect’s vector (allowing
us to determine the transformation matrix between the two coordinate
systems).

Figure 2 shows the sensor calibration process seen through the Visualizer
tool. This process is then repeated for any additional Kinect sensors in
relation to the reference sensor. Once all the Kinect sensors have been
calibrated, the Location Service ensures that a user that is visible by more
than one Kinect is only being tracked once.

To track a mobile device, we pair in with a user in the room and track
its location by tracking the user. In addition, we fuse sensor information
from the device with its location.This allows for interactions as “fl icking”
or “pouring” (Seyed et al., 2012). The use of multiple low-cost sensors
working cohesively to spatially track users and devices provides a less costly
approach, as opposed to more expensive and harder to setup tracking
systems (Marquardt et al., 2012). Multiple sensors types also allow for more
degrees of detail when tracking in the ubiquitous environment: to reduce

234

hardware costs, different areas in a space can be tracked at higher or lower
accuracy based on application needs.

For example, on a finer level of detail the Leap Motion sensor provides
finger tracking for a user in the space. Typically, the Leap Motion is fused
with a sensor that has a larger tracking range in order to provide more
“meaningful interactions”. By adding a Leap Motion to the environment,
developers can, for example, provide touch capabilities to non-touch
displays while using SoD for multi-surface integration.

As an intermediate sensor level, Apple’s iBeacon provides position data such
as close, near and far. The iBeacon sensor can get the position information
from both Android and iOS devices or from a person as long as they are
wearing a iBeacon tag. The iBeacon sensor is not as accurate as the Kinect.
However, it is most useful in a large ubiquitous environment and supports
tracking people between higher-accuracy spaces.

One of the goals in the development of the SoD Toolkit was to reduce the
learning effort for developers. The clients for SoD are all implemented in
the various sensor/devices native development platform, including C# for
Windows, Objective-C and Swift for iOS, Java for Android, and HTML5/JS.
Support for the corresponding IDEs is also provided, such as Visual Studio,
Android Studio and Apple’s Xcode. For other programming languages
and environments developers can write wrappers for the existing libraries.
Example applications for each library are also provided for developers to
help with easy startup.

Visualization Tool
The Visualization tool (Figure 3) for SoD Toolkit provides the general
overview of the environment for testing and debugging purposes. Ho shows
the current location of data locations, people and devices in the locator
coordinate system. It also provdes a list of all the connected clients and
devices in the environment, the sensors available, and the pairing state. For
instance, in Figure 3 there is a sensor available, one web client is running
and one person (unpaired to a device) is being tracked. Also there is a data
point available. If a mobile device was added to the system, the user could
quickly be paired to the device. As stated earlier, the Visualization tool is
also used for the calibration of multiple sensors.

The Visualization tool aids developers throughout the development process
by supporting fast and mixed prototyping. Sample clients and sensors
can be added to the environment through the Visualizer and will function
like the real entity in the system. This allows researchers to conceptualize
applications, environments and inter-device interactions regardless of the
stage of development and without having to make significant changes once
physical hardware is introduced (Seyed et al., 2015).

235

Figure 3. The Visualization Tool for SoD Toolkit.

Real-World Application
The University of Calgary is collaborating with C4i Consultants, a software
development company that focuses on military and emergency response
training programs, to design the Emergency Operations Center of the
future (EOC-F). In order to carry out a coordinated and synchronized
response during an emergency, EOCs collect information from all parties
involved to create a Common Operating Picture. An EOC is an extremely
collaborative environment, bringing together a representatives from
a number of organizations in a physical space to handle emergencies.
Each interacts with their own systems and devices but to coordinate the
response inter-agency collaboration is essential. This makes an EOC an
ideal candidate for a ubiquitous environment. In the EOC-F project, we
are designing an environment that tracks multiple stakeholders and allows
them to communicate and share information and plans using the spatial
awareness created by SoD.

An EOC setup may include a wall display, touch table, digital whiteboard
(Kapp Board), and a number of tablet devices (Figure 4). One or more
Kinects enable proxemics interactions within the EOC.

The wall display is intended to provide high-level information about the
emergency, increasing awareness of the situation. It is instrumental in
forming the Common Operating Picture (COP). A common reference point
creates a shared understanding of basic and vital information among EOC
operators. The information is aggregated from various information sources
and streams, including social media.

236

Figure 4. Typical EOC-F confi guration.

The touch-enabled table (Figure 5) is a central collaborative space for
decision makers, and provides an interactive map of the emergency site.
Operators can draw up response plans with the annotation tools, and
directly interact with fi eld units by controlling them on the tabletop map.
For example, hazard sites could be marked up, before an evacuation zone
is created. Field units inside the evacuation zone are automatically routed
to outside the area, while moving units outside the zone will be routed
around it.

The digital whiteboard provides a familiar planning tool present in existing
EOCs, but uses automatic capture of handwritten notes to quickly distribute
information to other EOC operators and fi eld responders. Information on
the whiteboard can be viewed on the tabletop, or sent to fi eld operators to
communicate key objectives and planning details.

The tablet devices (Figure 6) represent the mobile aspect of EOC-F, and
can be used both in the EOC and in the fi eld. Similar to the table, users
are presented with an interactive map and planning tools. However, tablets
are role-dependent, and provide different tools suited to the user’s role.
A police offi cer using the tablet could place roadblocks, while a HazMat
specialist could create regions around chemical spills and annotate it with
relevant information. Plans drawn on tablets remain private and role-specifi c,
until they are explicitly shared. The tablet also supports communication
between fi eld responders and the EOC, through video calls and SMS
texting capabilities.

237

Figure 5. Touch-enabled tabletop, with various planning tools displayed.

EOC-F uses SoD for proxemic interactions, for example for fl icking or
pouring information from a tablet to a table or for pulling information from
a table to a mobile device.

Figure 6. Various states of the tablet device: 1) Role selection, 2) general settings,
3) planning tools, and 4) video and SMS communications.

238

Flexibility of SoD Toolkit
In order to demonstrate the flexibility of the SoD Toolkit for integrating new
technologies, we describe the Projected Pixels project. The Projected Pixels
project was a Surfnet collaboration to bring a low resolution full-coverage
room display into the ubiquitous environment created with SoD Toolkit.

Projected Pixels. A challenge that can arise in a multi-device ubiquitous
environment is providing meaningful feedback that conveys information
such as an interaction has occurred and the target of the interaction. If no
feedback is given on the devices or in the environment, then users can be
left confused as to whether an action was successfully performed and what
actually has happened. One possible solution to mitigate these feedback
challenges is to add visual feedback to spatial and cross-device interactions
to the environment itself. The Projected Pixels project utilizes a method of
creating a low-resolution computer output on floors, walls, ceilings, furniture,
etc. – in order to assist in providing visual feedback for communication and
interactions in the projection-enhanced ubiquitous environment.

We explored how projection feedback could be used to show information
transfer between devices and the location of virtual information (data
points). We developed a Windows application using the SoD Toolkit for
device communication and spatial tracking, and used the ASPECTA toolkit
(http://aspecta.cs.st-andrews.ac.uk) for the projected pixels. The ASPECTA
toolkit only requires a standard projector, a hemispherical mirror and a PC
to run its API. The Windows applications for the Projected Pixels project
(the monitor display, tabletop, wall-display and tablet device) were each
developed using the C# client SDK provided by SoD Toolkit. A C# client
wrapper was created to directly communicate with the APSECTA toolkit’s
server running on the computer connected to the projector.

To evaluate the approach, we implemented three tasks:

1. sending information from one device to another,

2. receiving information from another device, and

3. finding a data point within the environment.

For each of the three tasks two variations of feedback were designed. We
looked at non-animated verses animated feedback. Animated feedback
appears when the action is initiated and is removed at the conclusion.
Non-animated feedback is static and visible throughout the duration of
a specified time. The sending task involved sending an image from the
tablet device to one of the three displays. The display that the information
was sent too, displayed the image once it was received. The tablet device
sends a message to the display, which listens for the event. The Projected
Pixels wrapper also listened for the event and projected the appropriate
feedback between the send and the receiving display. The receiving task
works the same but in reverse. Figure 7 shows the non-animated and

239

animated feedback respectively for the sending task and Figure 8 shows
the same for the receiving task.

Figure 7. (a) Left image, non-animated feedback and
(b) Right image, animated feedback for sending task (Pratte, 2015).

For the fi nding task when the person walked into the defi ned location the
information was received on the tablet device. For the animated feedback
shown in Figure 9b the image was projected on the fl oor as soon as a
person enters the data point and disappearing again when they leave. The
non-animated feedback shown in Figure 9a, a projected image at the data
point location appeared for the duration of time. For the fi nding task once
the person enters the data point location a message is sent to the tablet
device paired to the person, which is listening for the event.

Figure 8. (a) Left image, non-animated feedback and
(b) Right image, animated feedback for receiving task (Pratte, 2015).

Figure 9. (a) Left image, non-animated feedback and
b) Right image, animated feedback for fi nding task (Pratte, 2015).

240

Integrating into SoD Toolkit. The integration into SoD Toolkit was fairly
simple due to the modular setup of the Toolkit. A projector module was
added to create a projector object and to pass the events to the ASPECTA
toolkit’s server. Events from the devices are added to the Locator Service
and redirected to the projector module.

Conclusions
Creating a large ubiquitous environment with multi-surface and multi-
sensor interaction techniques is a complex task. In this chapter, we
introduced the SoD Toolkit that reduces the implementation complexity
of such environments. The SoD Toolkit builds on previous exploration into
ubiquitous environments, such as XDStudio (Nebeling etal, 2014), Conductor
(Hamilton and Wigdor, 2014) and Panelrama (Yang and Wigdor, 2014), and
extends their approaches to incorporate a more diverse set of devices and
sensors, supporting sensor fusion and the ability to implement novel multi-
surface interaction techniques. Researchers and developers can build and
explore their own designs for ubiquitous environments. The toolkit allows
novice researchers and developers to explore new and existing sensors
and devices for creating real-world ubiquitous environments while allowing
more expert developers to tailor the toolkit to fit their needs (e.g. the sensor
fusion). As a result the SoD Toolkit reduces development complexity and
overhead.

One of the limitations of this toolkit is the usage of the Kinect hardware,
which does not offer the same accuracy in tracking as larger scale, more
expensive systems like the Vicon, even with multiple Kinects. However,
we believe this is a necessary compromise when developing for a real-
world ubiquitous environment. Future work on the SoD Toolkit includes
integrating technologies that have device-centric sensors like the Google
Tango and the Microsoft Hololens, for different interaction in a ubiquitous
environment.

241

Filling the Space Between: Augmenting Multi-
Surface Environments with Low-Resolution Full-
Coverage Displays

Carl Gutwin, Miguel Nacenta, and Julian Petford

(Portions of this chapter previously appeared in the following published papers:
Miguel A. Nacenta, Regan L. Mandryk, and Carl Gutwin. 2008. Targeting across
displayless space. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ‘08). ACM, New York, NY, USA, 777-786. DOI=http://
dx.doi.org/10.1145/1357054.1357178. Robert Xiao, Miguel A. Nacenta, Regan L.
Mandryk, Andy Cockburn, and Carl Gutwin. 2011. Ubiquitous cursor: a comparison of
direct and indirect pointing feedback in multi-display environments. In Proceedings
of Graphics Interface 2011 (GI ‘11). Canadian Human-Computer Communications
Society, School of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, 135-142.)

Introduction
Multi-surface environments (MSEs) are systems in which several display
surfaces create a single digital workspace, even though the physical
displays themselves are not contiguous. There are many different types of
MSE: dual-monitor computers are a simple (and now ubiquitous) example,
but more complex environments are also now becoming feasible such as
control rooms with multiple monitors in multiple locations, meeting rooms
with wall and table displays, or ad-hoc workspaces with laptops and mobile
devices.

MSEs are now becoming more common as large displays and mobile
devices become increasingly available. The archetype of these environments
is the Smart Office, where it is common to see interconnected tablets,
wall-mounted displays, laptops, and projected surfaces all being used
concurrently and cooperatively (e.g., Benko and Feiner, 2005; Nacenta et
al., 2006) (Figure 1).

242

Figure 1. A Multi-Surface Environment with table,
wall display, tablets, and laptop.

One main issue that has arisen as people become more experienced
with MSEs is what to do about the space between displays. Many current
multi-display interfaces are direct adaptations of single-display designs,
and therefore tend to ignore the gaps between surfaces – this is called
“warping”. Warping means transporting the cursor directly from one display
to another, without moving through the physical space between monitors.
Several techniques for warping have been developed, such as stitching
(which warps the cursor as it moves across specifi c edges of different
displays) (Hinckley et al., 2004), wormholes (which warp the cursor when
it moves into a specifi c screen region), warp buttons (in which pressing a
software or hardware button moves the cursor to each display) (Benko and
Feiner, 2007), or named displays (in which the user selects the destination
display from a list) (Biehl and Bailey, 2004).

Although warping can be effective, this approach has a number of problems:
for example, users must remember an additional mapping which might take
time to learn; and with some techniques (such as traditional display stitching)
the mappings may become incorrect when the user moves to a new location
in the environment. The main problem, however, is that warping techniques
disrupt the relationship between motor and visual spaces (i.e., between how
the mouse is moved and how the cursor changes position in the physical
world) – they ignore the existing (and obvious) arrangement of surfaces in
the real world, which force users to learn different ways of moving within and
between displays. As a result, warping techniques are distinctly less natural
than regular mouse movement: they introduce an extra step into standard
targeting actions, make it more diffi cult for the user to plan and predict
the result of ballistic movements, and can cause tracking and interpretation
problems for other people in the MSE who are trying to follow the action.

243

An alternative to warping is to include the space between displays – in
fact, the entire interior of the room – in the model of the computational
workspace. This idea was introduced by Baudisch and colleagues (2004)
as “mouse ether” to deal with the space between dual monitors, but is
here extended so that the entire environment is considered to be part of
the workspace. The visible parts of the workspace, corresponding to the
physical displays, are then arranged based on what the user can see from
their current location and perspective. Combining ether and perspective in
MSEs provides a workspace in which cursor movement behaves as the user
expects, and in which the arrangement of displays corresponds exactly to
what the user sees in front of them.

This approach, however, comes at the cost of having to include the ‘ether’
in the digital workspace. This implies that in order to get from one display
surface to another, users must move through a displayless region where
there is no direct feedback about the location of a cursor. This is not a major
problem with ray-casting solutions (e.g., ‘laser pointing’), but does affect
indirect pointing devices such as mice or trackpads. Although the displays
in the room can provide indirect feedback about cursor location (e.g., using
arrows or halos), the large empty spaces in a room-based MSE can make it
very diffi cult for users to navigate between surfaces, because they have to
perform (sometimes complex) estimation and inference to determine the
cursor’s actual location.

Here we propose a different approach that makes it possible to realize a full
perspective-ether solution, that fully recognizes the arrangement of displays
in space, and that provides full feedback about the space between displays
as well. Our approach uses a full-coverage display to cover the entire inside
surface of a room with pixels (e.g., see Figure 2). These kinds of displays
have been proposed and discussed many times in HCI – predictions often
state that displays will become a commodity that will be purchased by area,
and so inexpensive (e.g., “a dollar per square foot”) that we will be able to
use them like wallpaper (Welch et al., 2000). These full-coverage displays
will provide many benefi ts and opportunities compared to current monitors
and screens, which cover only a small proportion of the environment.

Figure 2. Full-coverage display schematic, and implementation

projecting pattern on wall.

244

Previous work has introduced the idea that one way of covering a room with
pixels is to combine a projection system with a dome lens. However, these
systems are primarily used for output (e.g., planetariums); in this paper, we
look at the use of full-coverage displays as a way to fill the space between
displays in a multi-surface environment. Using a simple display system
with a standard data projector, a dome mirror costing less than $100,
and middleware to handle display geometry and integration with existing
desktop applications, we can provide basic feedback to users of MSEs.

In this chapter we introduce the general problem of space between
surfaces, show that this space is important in interactive systems, describe a
prototype full-coverage display that can fill the space between, and report
on an experiment used to test the value of filling the space between. We
conclude by exploring other uses for this novel display technology.

Background
An MDE is a combination of several displays where some kind of interaction
can take place across displays. MDEs enable a dramatic increase in the
available pixels of an interactive system and have therefore been commonly
adapted for commercial desktop systems; they have also been studied
by the HCI community for several decades (e.g., Bolt, 1980; Welch et al.,
2000). MDEs join together several displays of various types (e.g., monitors,
tablets, or tables) into a single logical workspace. Although multi-monitor
computers are the most common type of MDE, more complex environments
are possible that integrate display surfaces located around a room. Some
MDEs take advantage of the different characteristics of the various displays
in the environment: e.g., Baudisch and colleages’ (2001) ‘focus plus
context’ display paired a large but low-resolution projector with an inset
high-resolution LCD monitor. The system provided large-scale peripheral
context as well as detail in the area of focus. Other systems take similar
advantage of large displays around the user’s workspace to provide context
and awareness (e.g., Birnholtz et al., 2010).

One of the obvious operations that needs to take place in an MDE is the
movement of visual elements from one display to another. Previous research
has introduced a number of techniques to achieve cross-display object
transfer, including direct touch (Rekimoto, 1997), world-in-miniature (WIM)
representations of the display space (Biehl and Bailey, 2004), laser-pointer
based interaction (Myers et al., 2002), head-pose and gaze tracking-based
interaction (Ashdown et al., 2005), and mouse-based techniques (e.g.,
Waldner and Schmalstieg, 2010; see Nacenta et al., 2009 for a survey).
Although all technique types have advantages and disadvantages, we
decided to focus on techniques exclusively based on mouse operation
since the mouse is a common, accessible, and inexpensive device with
proven performance, and has several advantages over other technique
types; for example, it does not cause the same fatigue or inaccuracy seen
in ray-pointing techniques (Jota et al., 2010; Nacenta et al., 2006), it allows
access from a distance (unlike direct-contact techniques (Hinckley et al.,

245

2004)), and it does not require a change in visual context, such as WIM
techniques (Biehl and Bailey, 2004).

One of the recognized challenges of interacting with MDEs through indirect
input devices such as the mouse is displayless space, the real-world space
between displays that cannot represent any information. In previous
work, Nacenta and colleagues (2008) showed that in a flat dual-monitor
environment, performance diminishes proportionally to the amount of
displayless space (following Fitts’s Law). This study also showed that when
the displayless space is modeled as part of the workspace, performance
can be improved with indirect feedback such as Halos (Baudisch and
Rosenholtz, 2003); but the best performance was seen when displayless
space is ignored (i.e., a warping approach that resembles the standard way
that current operating systems connect multiple monitors).

The approach we explore in this chapter is to use a projection-based system
that covers the entire interior of the MSE’s room with usable pixels. Visions
of ubiquitous large-scale display surfaces have appeared for many years
in popular media and in HCI research (e.g., Bolt, 1980). For example, Bill
Buxton has stated that 100-DPI displays will be as cheap per unit of area as
standard whiteboards within a few. Although these kinds of full-coverage
display technologies are not yet available, several areas of research have
investigated different aspects of this idea.

Several researchers have worked on visualization and inter-action issues
for large planar displays (sometimes called ‘video walls’). These surfaces
are typically constructed of tiled monitors, which can provide very high
resolution out-put, but which require novel software for connecting multiple
computers and graphics subsystems (e.g., Ebert et al,. 2010). A variety
of interaction techniques for working with large wall displays have been
proposed: for example, techniques such as laser pointers and tracked
gestures have been investigated for interacting with displays at a distance
(e.g., Robertson et al., 1996). Vogel and Balakrishnan (2004) developed
a progression of interaction techniques for different distances from the
display, since proximity to the screen changes the ways that people interact
with visual information.

Data projectors are currently the most cost-efficient way to achieve large
displays (e.g., Johnson and Fuchs, 2007), although resolution is limited
unless several displays are combined. Researchers have explored several
aspects of projection-based display, including automatic calibration and
tiling (e.g., Ebert et al., 2010), perspective correction for different display
surfaces (Nacenta, 2006), and using multiple projectors to provide more
coverage and combine digital and real-world interactions (e.g., Welch et
al., 2000). Commercial systems used in planetariums have also provided full
coverage using a dome-shaped screen and a hemispherical projector lens
to distribute an image to the interior of the dome.

246

The development of mobile and handheld projectors has recently enabled
new kinds of interactions. For example, research into ‘structured light’
combines cameras or other sensing technologies with pico-projectors to
create mobile interactive surfaces that can be used on any fl at surface (e.g.,
Wilson and Benko, 2010). Similarly, steerable projectors have been used
as general-purpose display mechanisms for ubiquitous computing and
augmented reality (Pinhanez et al., 2003).

Modeling the Space Between as Part of the Workspace
The idea of including the empty space between displays was fi rst considered
by Baudisch and colleagues (2004), who proposed “Mouse Ether” to
solve problems in desktop multi-monitor setups, where the monitors are
“stitched” together (e.g., moving the mouse out of the right side of one
monitor warps the cursor to the left side of the other monitor). By taking
into account the actual size of displays and the space between them, Mouse
Ether provides a more accurate representation of the physical environment
in motor space (i.e., visual space and motor space match better).

Mouse Ether has two main advantages over ordinary monitor stitching.
First, it provides a better match between visual space and motor space
– the computational workspace now makes explicit use of the physical
arrangements of the different surfaces in the MSE – and avoids distracting
jumps and trajectory inconsistencies. Second, cross-display movements are
consistent with movement within a display, allowing for more natural cross-
display transitions. However, Mouse Ether also has an evident drawback:
the cursor is invisible when it is in displayless space, and the user lacks visual
feedback on its position (Figure 3). We solve this problem by using a full-
coverage display, as described below.

Figure 3. Inconsistency between motor space and visual feedback with Stitching.
A) The gap is ignored in motor space (gap is compressed into the warp point).

B) A diagonal motion is transformed into a multi-linear trajectory.

Using a Full-Coverage Display to Fill the Space Between Surfaces
Low-Resolution Full-Coverage (LRFC) displays are display systems that
blanket an entire multi-display environment with addressable pixels. Large
projector-based display systems have been seen before (e.g., Johnson and
Fuchs, 2007), but ours is the fi rst to cover an entire room with a single

247

static projector. In the LRFC we developed for the study described below,
an ordinary data projector is beamed at a hemispherical mirror, which
distributes the projector’s light around the room (Figure 4, Left). The idea
behind LRFC displays is that there are many display tasks in an MDE that
are dependent on the physical environment, but that do not need a full-
resolution display. Moving between physical displays that are located in
different parts of the room is one example.

Figure 4. Left: schematic of the full-coverage display. By refl ecting onto the

spherical mirror, the projector can project onto almost any surface. Right: the
movements of the mouse cause a change in the orientation of perspective cursor’s

defi ning ray.

Our particular interest in this system is the display of a cursor that can be
used to interact with multiple displays arranged around the room. The
algorithm to display a cursor has two phases: the calculation of the location
of the cursor in physical space, and the reverse mapping of this position to
projector coordinates.

To calculate the location of the cursor in the room we use the Perspective
Cursor algorithm. The system calculates the ray (r in Figure 4, Right) that
goes through the eye-position (E) of the user and is oriented according
to the movements of the mouse. Moving the mouse left to right will make
the ray rotate clockwise around a vertical axis on the user’s eye position
(changes the azimuth angle – red arrows in Figure 5). Moving the mouse
back to fore will rotate the ray to point more vertically (changes the zenith
angle – green arrows in Figure 4).

The ray intersects a 3D model of the room that has been previously provided
to the system. In our prototype, the 3D model includes all active displays,
the tables, the fl oor and all the walls of the room.

The fi rst intersection of the ray with one of the surfaces of the model
determines the position of the cursor in physical space (A in Figure 4). If
the cursor is located on an active surface, only this display will show it; if the

248

ray intersects a wall or a non-active table, the position of the cursor in the
3D physical space is passed to the next phase of the algorithm to enable
projection on a non-active surface.

Figure 5. Graphical formulation of the reverse mapping problem.

Now that we know the physical location of the cursor, we need to know
how to project onto it. The geometric problem of reverse mapping of the
physical position into the image coordinates of the projector is solved by
iterative Newtonian approximation. The graphical formulation is illustrated
in Figure 5: to project on a given point A, we need to fi nd a point P on
the spherical mirror M of radius R such that the angles α and β formed by
lines v (passing through P and the projector’s focal point F) and s (passing
through P and A) are symmetric with respect to the normal n to the mirror
at P. The intersection between the line v that connects F and the calculated
P in the image plane of the projector (point T) determines the coordinates
in the 2D image of the projector that will project onto A. These constraints
are derived from the physical properties of light propagation and mirror
refl ection.

The process described above can be applied to multiple points to draw
polygonal shapes such as the cursor. Unlike related approaches that use
steerable projectors or laser pointers, our system can easily project several
cursors. Any modern desktop computer can perform the calculations
necessary to provide many cursors in real-time.

The size and brightness of the pixels in the room depend on the projector
and size of the room. In our test setup, each pixel is approximately 10x7mm;
due to differing distances from the projector, pixels are not exactly the
same size all around the room. Because a single projector is used to cover
the entire room, the brightness of the image is reduced. In our test setup,
which uses an ordinary Sony VPL-CX11 1500-lumen projector in a low-light
environment, the cursor is easily visible. A more powerful projector would
easily be able to display the cursor in either a brighter or a larger room.

The control-display gain for perspective cursor in our system is fully

249

adjustable. For our experiment we set it so that 3000 mouse pixels translate
into 180 degrees for either movement; in other words, the entire fi eld of
view has the same mouse resolution as a 3000x3000 pixel display.

We conducted our study with participants in a fi xed location, so we were
able to achieve perspective effects without real-time head tracking. In a
real-world implementation, the location of the user’s head must be tracked;
this is now becoming possible with low-cost equipment (Nacenta, 2006).

Evaluation
We compared the effectiveness of a full-coverage solution that showed
a cursor between the surfaces to an indirect-feedback solution (modifi ed
Halos) and a warping technique (Stitching). We also tested a combined
technique that used both UbiCursor and Halos. In the study, participants
carried out simple cross-display pointing tasks in an MDE with fi ve displays.
We constructed a multi-display environment in a meeting room, using fi ve
displays. The room setup is shown in Figure 6.

Participants performed repeated aiming tasks, which always started on one
display and ended on another (there were no within-display paths). We
tested six paths as shown in Figure 4 (right): A→C, B→C, C→E, E→D, D→B,
and A→E. Targets were presented in both directions for all paths (e.g.,
A→C and C→A). Paths were one of three types: coaxial movements across
right-to-left and top-to-bottom seams (B→C, C→E), non-coaxial movements
across right-to-top seams (A→C, E→D), and multi-hop movements across
intermediate displays (D→B, A→E).

Figure 6. Stitching confi guration of the displays (left) and experimental paths
(right). Blue: coaxial, Green: non-coaxial, Red: multi-hop.

The aiming task was comprised of an initial selection of the source target,
movement to the display containing the destination target, and selection of
the destination target. The destination target of a trial and the source target
of a subsequent trial were never presented on the same display, requiring
participants to move the cursor to a different display between trials. The
source target was always presented in the center of the monitor, and the
destination target was presented either in the center or at the leading edge

250

of the display (see Figure 7).

Figure 7. Leading edge target task (A) and Center target task (B).

Sixteen participants carried out the study, and we used a repeated-measures
factorial design with three factors:

• Technique (UbiCursor, WedgeHalo, UbiCursor+Halo, Stitching)

• Path (six unique paths in both directions; see Figure 6)

• Target location (leading-edge or center)

The dependent variables, recorded by the study system, were trial
completion time and number of errors. We also report on the results of
the NASA Task Load Index worksheets completed after each interface
condition, and the post-experiment questionnaire.

An omnibus ANOVA with three factors: technique (UbiCursor, WedgeHalo,
UbiCursor+WedgeHalo, Stitching), path (12 levels, 6 different display
combinations in both directions), and target type (centered on display,
or in leading edge), and participant as random factor yielded signifi cant
differences on the log-transformed completion times for technique
(F3,42=8.7, p<.001, η2=.39), path (F11,154=166, p<.001, η2=.92), target
type (F1,14=285, p<.001, η2=.95), and for all fi xed factor interactions
except technique*target type (F3,42=.52, p=.67, η2=.04). Logarithmic
transformation of the data was required to comply with the normality
assumption of the parametric ANOVA.

Post-hoc tests on the technique factor reveal that all average completion
times between techniques were statistically different (all p<0.006 after
Tukey HSD multi-comparison correction) Averaged across all tasks and
target types, UbiCursor is the fastest (µ=1.83s), followed by UbiCursor +
WedgeHalo (µ=1.92s), WedgeHalo (µ=1.98s), and Stitching (µ=2.04s). See
Figure 8.

251

0

0.5

1

1.5

2

2.5

avg(CT) in s

0.2

0.225

0.25

0.275

0.3

avg(log10(CT))

Figure 8. Average completion times by technique in a linear scale (left) and after
a log10 transformation (right). Error bars indicate standard error. Note that the

vertical scale starts at 0.2 for the log-transformed graph.

The results from the omnibus comparison of techniques generally support
H1 (direct feedback is better than indirect feedback); the interaction
between technique and path supports H2 (techniques perform differently
on different paths). H3 is contradicted by the results since center targets
were reached significantly faster than leading edge targets, even though
the distance that needs to be covered is larger (µcenter=1.8s, µedge=2.1s).

Path Analysis
To test H2, H2a, and H2b, we performed ANOVAs equivalent to the global
test, but separately for each of the three a-priori groups of tasks (coaxial, non-
coaxial, and multi-hop). The results are analogous to the omnibus test results
(technique, path and target type p<0.05), except that the technique*target
type interaction was significant for the coaxial tasks (unlike the omnibus
and the other task groups). The post-hoc comparisons between techniques
yield the same ordering (UbiCursor, UbiCursor+WedgeHalo, WedgeHalo,
Stitching), but with fewer statistically significant pairings because of the
reduced power of the segmented data analysis (see Table 1).

U
bi

cu
rs

or

U
bi

+H
al

o

W
ed

ge
Ha

lo

St
itc

hi
ng

U
bi

cu
rs

or

U
bi

+H
al

o

W
ed

ge
Ha

lo

St
itc

hi
ng

U
bi

cu
rs

or

U
bi

+H
al

o

W
ed

ge
Ha

lo

St
itc

hi
ng

UbiCursor x 0.56 <0.01 <0.01 x <0.01 <0.01 <0.01 x <0.01 <0.01 <0.01
Ubi+Halo d x 0.11 0.52 d x 0.22 <0.01 d x 0.4 <0.01
WedgeHalo d d x 0.98 d d x <0.01 d d x <0.03
Stitching d d d x d d d x d d d x

coaxial non-coaxial Multi-hop

Table 1. P values of the post-hoc multiple comparison tests for the different path
groups (Tukey HSD multiple comparisons, significant if < 0.05). Green cells indicate

significant, red not-significant, yellow close to significance.

252

These results generally confirm H2a and contradict H2b (i.e., Stitching
did not perform better in any path group) but, more importantly, provide
evidence that the grouping of paths we determined a priori is not useful
to further differentiate the performance of the different techniques. We
address this issue in Section 5.2 (additional analyses).

Errors
The error counts across participants (see Figure 9) reveal that participants
missed the target many more times with Stitching (502 misses, 33 per
participant average) than with any of the other techniques (UbiCursor: 354
misses, 23.6 per participant, WedgeHalo: 364 misses, 24.3 per participant,
Ubi+Halo: 391 misses, 26 per participant). Notwithstanding the size of the
overall differences, a non-parametric Friedman test revealed no significant
difference in the number of errors between techniques (χ2(3)=.568, p =
.904), possibly due to the large variability in number of errors between
participants. Some participants made large numbers of errors with Stitching
– up to 86 – whereas for two participants Stitching was the only technique
with no errors.

0
2
4
6
8
10
12
14
16
18
20

0

200

400

600

UbiCursor WedgeHalo Ubi + Halo Stitching

Total Errors

Median Errors

To
ta

l E
rr

or
s

M
edian

Errors

Figure 9. Total and median errors (excluding training).

Discussion
Our study showed that a direct-feedback, perspective-based technique for
supporting cross-display movement (Ubiquitous Cursor) was significantly
faster than an indirect-feedback technique (WedgeHalo), a combination
technique (Ubi+Halo), or a standard cursor-warping technique (Stitching).
In the following sections we explain these results in terms of the main
differences between these techniques (direct vs. indirect feedback;
perspective vs. warping), and also discuss the limitations of this work and
the ways it can be generalized for designers of MDEs.

The main goal of our experiment was to investigate the differences between
direct and indirect feedback for mouse-based cross-display targeting. The
results of our experiment provide solid evidence for our hypothesis that
UbiCursor (a technique with direct targeting feedback) is better than indirect
forms of feedback, such as wedges or halos. The difference between our
direct and indirect conditions is underscored by the fact that the indirect

253

feedback technique we tested – WedgeHalo – was optimized for the study
in ways that would cause difficulties in real use (e.g., it occludes many pixels
on the displays and would be distracting in collaborative work environments).

In addition, the combination of direct and indirect feedback
(UbiCursor+WedgeHalo) was not equivalent to UbiCursor alone. Adding
indirect feedback appeared to impair performance, possibly due to the extra
cognitive load of deciding which type of feedback to pay attention to. This
result is relevant for the design of targeting techniques in MDEs because it
indicates that, for targeting tasks, more information is not necessarily better.

The empirical study presented in this paper provides further evidence
that using an input mapping that corresponds to the user’s position (i.e.,
perspective techniques) is beneficial for performance. Our results tested an
MDE where the displays were sparser than in the original Perspective Cursor
study (Nacenta et al., 2006). Moreover, our results also help generalize the
original findings to variants of perspective where feedback is direct, and to
other forms of indirect feedback.

Although we expected our initial classification of paths to shed some light on
the differences between techniques, it was only through a new regrouping
that we could further learn about the specific strengths of each technique.
Our results suggest that Stitching only has an advantage over perspective
techniques if the displayless gap is large. In contrast to the planar dual-
monitor setup studied by Nacenta and colleagues (2008), where Stitching
was the fastest technique even with relatively small gaps between displays,
the more complicated transitions between displays in our experiment made
perspective mappings a better option, even for short transitions such as the
C→E path.

Our additional analysis also suggests that perspective provides an
advantage over Stitching for traveling from a small display to a larger
display (e.g., C→E), but this advantage is reversed when targeting in the
opposite direction (e.g., E→C) because of the ‘funneling’ effect created by
stitching a large screen edge to a smaller one. In perspective techniques,
traveling from large to small screens requires reaching the small display
within its surrounding displayless space. We believe that this effect may
be responsible for the asymmetry in results for paths B→D and D→B, and
paths E→D and D→E.

Testing two kinds of target positions within the target display revealed that
reaching targets that are close to the leading edge is harder than targets
that are centered. This is not surprising for Stitching techniques, which are
known to cause overshooting (Nacenta et al., 2008), but was unexpected
with the perspective-based techniques (including UbiCursor, which provides
direct feedback). This results contradicts linear and angular formulations of
Fitts’s law (i.e., by definition, leading-edge targets are closer to the starting
point and should therefore be faster to reach). We speculate that the visual

254

transition from background display to foreground display may have caused
people difficulty; however, this is a phenomenon that should be investigated
in future work.

Combining our findings about displayless space with Nacenta et al.’s (2008)
earlier results implies that the targeting geometry of complex MSEs is very
different from that of small and large single displays. Designers of multi-
display environment interfaces can take this into account: for example,
commonly accessed interface elements could be placed at locations
that are unlikely to be leading edges (e.g., top center of display E in our
configuration), and displays that are frequently used in combination can be
located so that they have only a small gap.

We designed our study to test a broad range of targeting transitions that
represent a sample of many of the types of targeting tasks that could
take place in complex MDEs. For example, the paths that we selected
represent transitions from horizontal to vertical displays, from large displays
to small, and between displays that are close or distant from each other.
This provides a fairly generalizable set of tasks, but makes it difficult to
quantify the specific contributions of factors to overall performance. It is
therefore necessary to follow up with experiments that are designed to
investigate the factors that our study highlighted as most relevant: the effect
of angle difference between displays, the threshold at which displayless
space becomes detrimental for performance, and the effect of display size
differences on targeting. To further generalize the results, it would also be
interesting to test tasks with different target sizes.

Finally, the focus of our study was on targeting feedback for mouse-
based interaction. Although we believe that mouse interaction will still
be predominant for future MDEs, new MDE control techniques from
other emerging input paradigms such as multi-touch interaction and free-
air gesturing should be designed and tested against perspective mouse
interaction.

Although additional work needs to be done to replicate and extend our
results, there are several principles and guidelines that can be generalized
from our experiences. These ideas will help designers of MDEs understand
the issues underlying cross-display targeting performance. First, our results
show that stitching becomes problematic in complex MDEs. Although
stitching is a simple solution for composing an MDE’s workspace, and
although stitching outperforms Ether-based approaches in simple setups,
this technique becomes more difficult for users when paths do not map easily
to a 2D plane. For highly complex MDEs, perspective-based approaches
should be considered as a way to simplify cross-display movement. Second,
our study shows that direct cross-display feedback works better than indirect
feedback. In situations where perspective-based techniques are used, our
study shows conclusively that direct feedback improves performance. The
low-resolution full-coverage display system that we developed shows that

255

direct feedback can be provided simply and inexpensively. Third, stitching
will still be faster if the real-world distance between displays is large. As
distances between displays increases, eventually the advantage of cursor
warping overshadows any benefits of perspective-based techniques. If an
MDE’s displays are very far apart, Stitching will likely be the best choice,
although hybrid techniques are also possible.

Conclusions
Multi-display environments present the problem of how to support movement
of objects from one display to another. We developed the Ubiquitous
Cursor system as a way to provide direct between-display feedback for
perspective-based targeting. In a study that compared Ubiquitous Cursor
with indirect-feedback Halos and cursor-warping Stitching, we showed that
Ubiquitous Cursor was significantly faster than both other approaches. Our
work shows the feasibility and the value of providing direct feedback for
cross-display movement, and adds to our understanding of the principles
underlying targeting performance in MDEs.

Our initial experiences with Ubiquitous Cursor suggest several directions
for further research. First, we plan to test the UbiCursor technique with
more realistic MDE tasks; in particular, we will explore the effects of having
different C:D ratios in the projected display and the MDE displays. Second,
we will further investigate the principles uncovered in our study (effects
of angle differences between displays, performance thresholds for the
different techniques, the effects of different display and target sizes, and
the use of the technique with other input devices). Third, we will explore the
other possibilities presented by the idea of a low-resolution full-coverage
display, which can enable augmentation of and interaction with real-world
objects inside the scope of the projected display.

256

The Simple Multi-Touch Toolkit

Kalev Sikes, Zachary Cook, Erik Paluka, Mark
Hancock, and Christopher Collins

Introduction
The popularity of mobile devices and large interactive displays has brought
the touch input paradigm into the limelight. Individuals from various
domains are eager to take advantage of the benefits of this interaction
style. The problem is that the differences from mouse and keyboard input
often create barriers for non-expert programmers to prototype their ideas.
The lack of familiarity of the unique requirements for surface application
development has inhibited the proliferation of this platform as a medium
for research, design, and art. To mitigate this problem, surface computing
education needs to be incorporated into the curricula of programs in
computer science (CS), information systems, and digital media. In order for
this to happen we need tools which can be successfully used by people of
different programming skill levels, and which support the rapid prototyping
of applications. Existing toolkits for surface development tend to be too
complex for non-CS majors to use. In addition, the time required to create
a prototype using these toolkits prevents them from being integrated into
high paced human-computer interaction courses. To solve this dilemma, we
have created the Simple Multi-Touch toolkit (SMT).

With a focus on education and interdisciplinary use, the main goal of our
open source toolkit is to simplify the prototyping process for people from
differing domains whose programming skill levels range from novice to
expert. As a library for the Processing programming language (Reas and Fry,
2006), our toolkit has a simplified syntax and an accessible graphics model.
Its high-level nature makes surface development a more inclusive activity
and less daunting for beginners. Novices are able to take advantage of its
features without knowing CS concepts such as object oriented and event-
driven programming. The toolkit is also beneficial for expert programmers
since it is highly customizable, efficient, and provides access to low-level
input data and graphical primitives.

To further reduce the knowledge and time required to develop surface

257

applications, SMT is device agnostic through the integration of many input
bridges. People no longer have to spend a considerable amount of time
customizing their application or use multiple toolkits to develop for different
platforms. These design choices have resulted in a robust toolkit that has
been used, with success, at multiple universities for developing research
prototypes to full-fledged applications. The tool has also been integrated
into HCI courses at two universities to facilitate the teaching of prototyping
to non-programmers and multi-touch computing to CS students.

Our primary contribution is a simplified software toolkit that can reduce
the amount of time required for prototyping by both programmers and
non-programmers. We also briefly describe our experiences and resulting
insights gained from using this toolkit over the span of two years in HCI
courses, as well as for research and application development.

Related Work
With the advent of computer vision frameworks (NUI Group, 2013;
Gokcezade et al., 2010; Kaltenbrunner, 2009), the creation of multi-touch
systems has become increasingly prevalent. With this rising popularity,
researchers have been working on ways to reduce the difficulty of developing
for these platforms (Kammer et al., 2010). As a result, multi-touch toolkits
for different programming languages have been designed (Hansen et al.,
2009; Khandkar et al., 2010; Laufs et al., 2010; Leftheriotis et al., 2012;
Luderschmidt et al., 2010; Nebeling and Norrie, 2012). While reducing
development complexity is important, supporting rapid prototyping is
equally so, as it allows the evaluation of design decisions with minimal effort
(Tang et al., 2011) resulting in an improved design process (Olsen, 2007).

To support rapid prototyping in post-WIMP design, König et al. created
Squidy, which uses semantic zooming and visual dataflow programming
to make development accessible to novices with the ability to provide
advanced features when needed (König et al., 2010). T3 is an interactive
tabletop toolkit meant for prototyping high-resolution (multi-projector)
applications (Tuddenham and Robinson, 2007). To facilitate prototyping
interfaces for shared interactive displays, such as interactive tabletops, Shen
et al. (2004) developed the DiamondSpin toolkit, which works exclusively
with DiamondTouch tables. Specifically focusing on gaming, Marco et al.
(2012) created a software toolkit to ease the prototyping of tangible games
for vision-based interactive tabletops. Hasen et al. (2009) present the PyMT
toolkit, with a specific focus on a new event model to support flexible and
creative design of multi-touch widgets and interactions in a post-WIMP
environment. Our SMT toolkit similarly supports rapid prototyping of surface
applications, but we focus on the Processing model of coding as sketching,
and designed it to support teaching multi-touch programming in classroom
environments as well as enabling digital media expressivity and creativity.

Pedagogical software toolkits have ranged from teaching students skills
related to art (Ariga and Mori, 2010) to more traditional computer science

258

concepts and skills (Kobayashi et al., 2006; Murshed and Buyya, 2002).
Toolkits have been shown to lower the skill barriers for entry and reduce
development viscosity when creating user interface applications (Olsen,
2007). For example, Hornecker and Psik (2005) effectively used the ARToolKit
to teach students how to prototype tangible interfaces. In this work, we
target the Processing programming language to create a toolkit which is
useful for both prototyping and education for multi-touch applications.
Processing is a high level programming language and development
environment designed to enable nontechnical people to use computational
methods in the creation of their projects (Reas and Fry, 2006). Our toolkit
augments Processing by providing the first comprehensive library of high
level methods and features targeted at reducing the complexity of surface
development and supporting educators in teaching the fundamentals of
surface computing.

Design Goals
The ability to use one’s hands and fingers to interact with digital information
is a promising technology for a variety of creative applications and interfaces.
Hardware supporting collaboration, in the form of tabletop and wall displays,
is becoming more common and significant continued growth is expected
(Jain, 2014). For a variety of reasons, including variable content orientation,
multiple simultaneous inputs, the prevalence of direct manipulation, and
a need to support co-located collaboration, traditional WIMP (Windows,
Icons, Menus, and Pointers) interfaces are undesirable for many multi-
touch usage scenarios. We have designed SMT for non-programmers
and programmers alike to be able to rapidly prototype creative and novel
interfaces and techniques that make use of multi-touch interaction.

We chose Processing as our target language for several reasons. Processing
supports teaching the fundamentals of computer programming, and has
been used for this purpose in many different educational contexts around
the world, including high school, university, and online courses in visual arts
and computer science, and has been downloaded over two million times
(Reas and Fry, 2015). The Processing platform already has many powerful
graphical libraries, which support the rapid prototyping of beautiful, creative
sketches.

It has an easy deployment pathway for installation of libraries directly in the
IDE, and a wide variety (e.g., sound, networking, data, math, etc.) of libraries
are already available. Processing is built around a flexible programming
model supporting three levels of development (Reas and Fry, 2003):

Simple: single line programs
Novice: hybrid procedural/object-oriented style
Expert: full object-oriented (Java) style

In addition to supporting this multi-level coding flexibility, we built the SMT
toolkit using the following design objectives, derived from our experiences
in teaching modules on multi-touch computing in HCI courses:

259

Multi-touch for the masses. The toolkit was designed to allow people
to rapidly create prototypes with little knowledge of programming. We
focussed specifi cally on allowing access to touch interaction and common
multi-touch components, without the need for an understanding of object-
oriented programming (OOP) or events.

Ability to sketch multi-touch ideas. The toolkit was designed to allow for the
sketching of multi-touch interfaces and interaction techniques. Specifi cally,
we focussed on minimizing code required to have a working multi-touch
interface that enables the testing of design ideas, rather than on polishing
the look and feel of interface components or developing a robust application
ready for deployment.

Ability to code multi-touch in a one-hour lab session. The toolkit was also
designed to enable students to go from no experience with multi-touch
programming to creating a simple multi-touch interface in a one-hour lab
session. Specifi cally, the toolkit was designed with the intent of allowing
courses to focus content on the design aspect of multi-touch, rather than
the in-depth programming understanding required to make working multi-
touch systems.

Support for a variety of platforms and inputs. The toolkit is cross-platform,
running on Windows, Mac, and Linux. An Android version is also available
but requires a custom build of Processing to use it. SMT was designed
to support native (e.g., Windows) touch events, as well as popular input
providers such as the TUIO protocol (Kaltenbrunner, 2009). SMT also
supports touch emulation using a mouse.

Support both novices and experts. The toolkit was designed for use in
teaching of HCI courses where students range from students in programs
such as visual design or management (“novices”), to fourth year CS students
(“experts”). Similarly, the toolkit was designed to support quick sketching of
small ideas (e.g., lab assignments) as well as development of large projects
(e.g., graduate student research or interactive artwork). This was achieved
through a fl exible syntax in which there are multiple avenues for achieving
the same result.

Figure 1. Overview of the architecture of the Simple Multi-Touch Toolkit. The
Processing Sketch is written by the student or designer after importing the SMT

library, which provides input handling and rendering capabilities.

260

The Simple Multi-Touch Tookit
Following our design guidelines, the SMT toolkit integrates with the styles
of programming supported by Processing. The central construct of SMT is
a new display and interaction primitive called the Zone. SMT also provides
back-end support for a variety of input devices, handling touch events
and providing them to applications using a common Touch construct. The
accompanying website offers documentation, including complete JavaDoc
and a full suite of tutorials and teaching materials.

Zones
The Zone is the central concept of the toolkit (Figure 1, bottom left). Zones
are similar to Windows or Panels from other windowing toolkits, with the
important difference that, as graphical primitives, they are not limited
to assumptions such a predefi ned direction/shape/scale or interaction
through a single mouse and keyboard. Moreover, they are designed to
be understandable without an in-depth understanding of object-oriented
programming, messaging, or callback functions. Each zone defi nes a
drawable and touchable artifact in the programmer’s sketch. Zones can be
customized to accomplish a variety of interface goals. The most important
and common modifi cations, changing how a zone draws and what happens
when it is touched, have special support from the toolkit. Zones can be
nested, which permits the creation of more complex user interface elements,
such as toolbars and menus (which SMT also provides).

Figure 2. An example from Processing’s website (https://processing.org/examples/
mouse2d.html) to demonstrate mouse use (left),converted to support multiple

touches using SMT (right).

Zone Methods. There are two critical methods that must be implemented for
each zone. These are the draw method (adapted from Processing) and the
touch method (introduced in SMT). There are two different styles in which
these methods can be written—procedurally and using object-oriented
programming (OOP). These two styles mimic the approaches taken by

261

Processing and Java, respectively. We discuss how we incorporated both
styles into SMT later in this report. To implement these methods using OOP,
the traditional approach of overriding the methods in a class that inherits
from the Zone class is used:

To implement these methods procedurally, one would fi rst create the zone
with a string-based name:with a string-based name:

And then defi ne a method in the processing sketch by appending the zone’s
name. For example, to implement the draw method, one would write the
method:

To implement the touch method for same zone, one would write the method:To implement the touch method for same zone, one would write the method:

When both a procedural and object-oriented implementation are detected
for the same zone name and method, the procedural one is selected and
invoked by the toolkit.

Nesting. An important principle in user interface design is the nesting of
elements. SMT supports this principle by permitting zones to be nested in
parent-child relationships. This is done by having the child zones inherit their
parent’s transformation matrix. If the parent is rotated, scaled, or translated,
the child will be rotated, scaled, or translated along with it.

Touch Input
SMT supports all the most common desktop touch input devices (Figure 1,
right). This includes TUIO devices, Windows Touch, SMART Tables, and Leap
Motion. Each of these touch event sources are optional and can be used
in any desired combination. Since each of these devices provides events in
a different way, they must be unifi ed in some manner. SMT handles this by

262

converting all input into the TUIO protocol. SMT then wraps the underlying
TUIO cursor object with a convenient Touch class which provides the user
with an abstract handle to touches that is both easy to understand and use.
For example, to make any Processing sketch touch-capable, one need only
add a few lines of code (Figure 2).

Figure 3. Various interface components provided as Zones in SMT.

While we have designed processing of touch events to closely resemble
mouse handling in Processing, we have also provided several techniques
for conveniently enabling common multi-touch interaction techniques,
such as rotation, translation, and scaling. For example, to implement the
common RST (rotate-scale-translate) method on any zone, one would write:common RST (rotate-scale-translate) method on any zone, one would write:

Implementation Details. After conversion into the TUIO format, touches are
assigned to zones using standard colour picking. The defi nition of picking
bounds is actually done with a zone method in the same form as the draw
and touch methods previously discussed. Special care has been taken in the
development of SMT to prevent colour calls and similar erroneous call from
being made within this picking method. After touches have been assigned
to their zones, a group of methods that correspond to the main types
of touch events are invoked. These methods can also be defi ned in the
procedural or object-oriented form. Finally, the touch method is invoked,
within which there are a number of predefi ned standard gestures that can
be used, such as drag, pinch, rotate, and scale.

Common Interface Components
In addition to providing support for programmer-drawn zones and low-level

263

touch handling, we provide several common interface components that can
be added in the same way as any other zone. For instance, we provide
support for tabs (TabZone), buttons (ButtonZone), sliders (SliderZone,
SlideRevealZone, PatternUnlockZone), checkboxes (CheckBoxZone), menus
(PieMenuZone and LeftPopUpMenuZone), keyboards (KeyboardZone), and
many other common interface components (for a total of 21 zones). Figure
3 shows several of these components rendered in an SMT sketch.

Many of these components are made interactive through methods that can
again be overridden in a child class (OOP) or directly in the sketch through
a named method (procedural). For example:a named method (procedural). For example:

Development and Debugging Tools
Multi-touch Emulation. Not all development machines necessarily have
touch input methods. In order to support the development and testing of
SMT sketches on machines lacking such input devices, we implemented a
convenient way of emulating multi-touch with just a mouse. The system is
fairly simple: the left mouse button emulates a temporary touch, and the
right mouse button emulates a touch that lingers. Touches created with the
left mouse button will only stay as long as the mouse button is held down.
Conversely, touches created with the right mouse button will remain after
the mouse button is released. At this point, these lingering touches can
either be moved around with the left mouse button, or removed by right-
clicking them again. Any number of touches can be created, but only one
can be moved at a time with the mouse.

Procedural Programming Warnings. The procedural-style zone methods
must follow a fairly specifi c form in order to be detected and invoked
properly. Since mistakes in following this form are easy to make, SMT
provides a number of warnings to help guide the user. For example, when
a method is detected with one of the zone method prefi xes, but the rest of
the method name does not match any known zones, it is likely that the user
simply misspelled the name of one of their zones, so SMT prints a warning.

Documentation. In this vein, SMT’s website covers most of the bases. In
addition to recent release information, the website hosts SMT’s JavaDocs
as well as a full suite of tutorials, examples, and a Processing-style reference
page. The tutorials start with the basic concepts, then covers all the important
more advanced concepts, including various visual customizations, how to
make viewports, and how to transition code from the procedural style to

264

the object-oriented style.

Programming with SMT
In this section we demonstrate through examples how SMT supports both
novice and expert coding styles in a manner which is harmonious with the
norms in the Processing programming language. Many of these examples
are also available in the tutorials section of the SMT website.

Supporting Different Programming Styles
We support two main styles of development, novice and expert. Statements
in each style can be interleaved in the same application, giving maximal
flexibility to developers. The novice style is a hybrid of procedural and
object-oriented programming (OOP), minimizing use of OOP concepts such
as event processing, constructors, and object inheritance. The expert style
is standard OOP. In addition, developers may use the Processing IDE (best
suited for novices) or whichever development environment they prefer (e.g.
Eclipse, best suited for experts). For example, the standard Java statement
SMT.add(new Zone(“MyZone”, 100, 200, 50, 60)); can be rewritten as SMT.
addZone(“MyZone”, 100, 200, 50, 60); in the novice style. Note that due to
the constraint that all Processing sketches must extend PApplet (“Processing
Applet”), we are unable to make methods available to developers without
requiring the SMT. prefix.

In the following example we demonstrate how to create a simple, highly
responsive application which renders a custom “happy face” Zone that
supports multi-touch rotate, translate, and scale. The code is written using
the Processing hybrid procedural/object-oriented style for novices (Figure 4,
left) and using traditional object-oriented style for experts (Figure 4, right).

In both examples, the sketch is initialized with the import statement from
SMT, which is provided automatically by Processing when the library is
included in the IDE. The setup method is common to all Processing sketches.
In SMT it must include a call specifying the initial window size and selecting
the SMT renderer, which inserts SMT zone management into the Processing
rendering queue. SMT is then initialized. In this example, a single zone called
“MyZone” is added to the sketch. In the novice style, the zone is added by
naming it in the addZone call, and subsequent draw and touch methods
reference the specified name using reflection. That is, the novice can create
a method called drawMyZone and it will be invoked appropriately to render
the zone. Some people, especially those used to Java and object-oriented
programming, can find SMT’s reflection-invoked methods non-intuitive.
Thus, in the expert style, an inner class called MyZone is created using the
add method and has its own draw and touch methods.

265

Figure 4. Code for creating the “happy face” example, using novice (i.e., more
procedural) approach on left, and expert (OOP) approach on right, and the resulting

sketch (bottom).

Examples
In this section, we introduce Processing sketches built with the SMT
toolkit. To support a learning-by-example style of learning, as requested
by students in the fi rst in-class deployment, the SMT library in Processing
comes with more than 25 example sketches which illustrate each Zone type
and method. In addition, we provide 4 sketches corresponding to online
tutorials, and 12 fully realized demonstration applications, including a photo
organizing application, a checkers game, a login screen, and a table hockey
game. We will discuss the table hockey example below.

The table hockey demonstration application was made by an intern within
their fi rst week working with SMT. The 311-line sketch produces a simple
two-player table hockey game, designed to be played on a multi-touch
table display. Each of the pucks are SMT Zones. All the pucks could

266

theoretically be handled at the same time, as long as the touch devices
being used can handle that many touches. Pucks can be tossed across the
game board at variable velocities. To demonstrate Zone manipulation, a
160-line custom physics engine manages collisions between pucks and with
board boundaries, but this could also be accomplished with a third party
physics library.

Figure 5. A table hockey game written with SMT.

Initial Evaluation
After the initial phase of development on SMT, we deployed it in two HCI
classes for students to use in laboratory activities and in the development
of term-long group projects. We studied the deployment of the toolkit
through student feedback surveys and analysis of completed student
projects. The goals of the study were to investigate whether SMT was
useful for prototyping multi-touch applications, accessible to novices, and
powerful for experts. In particular, we sought to understand the speed of
the development cycle and whether students became comfortable with
rapid prototyping (sketching) using SMT during their brief exposure to it.

Method
Participants were recruited from two HCI courses at two separate universities.
At one of the universities, the HCI course was being taught to mainly
management sciences students who had relatively little experience with
programming (“novices”). At the other university, the students were fourth
year computer science and software engineering students (“experts”). The
idea behind this approach was to show separately how both novice and
intermediate programmers responded to SMT.

After their fi rst lab session using SMT, the students of these courses were
asked to fi ll out a questionnaire on the toolkit. After their last lab session
using SMT (6 weeks later), they were asked fi ll out the same questionnaire

267

again. Students were invited to grant permission to use the code and images
of their project for the purpose of analysis of the toolkit. The questionnaire
was based on “A Cognitive Dimensions Questionnaire” (Blackwell and
Green, 2007), a standardized framework for analyzing the usability of
information artifacts, in particular software systems (Blackwell, 2015). All
data was collected by a third party and retained until after fi nal grades were
submitted to ensure separation of the study and the course outcomes.

We received a total of 22 responses to the fi rst round deployment of the
questionnaire, but only 1 response to the second round. At one of the
universities, no students completed the questionnaire. Thus, all responses
we received were from the “experts” group. This made the intended
comparison between the four sets of responses infeasible. Results below
refer only to the fi rst administration at one university. Four (out of 14) groups
in the computer science class gave unanimous permission to evaluate their
projects for the purposes of this study.

Figure 6. Breakdown of time spent, sorted by time spent searching for information.

Questionnaire Results
Below we discuss the results of the three sections of the questionnaire:
time using SMT, questions about usability of the API, and suggestions for
improvement.

Time. Out of the 22 participants who completed the questionnaire, 19 had
only spent 1-2 hours working with the toolkit. The other three participants
all had spent 3-5 hours working with the toolkit.

A series of questions asked about fraction of time spent on each type of
development activity that can occur while using a notation. It was intended,
but not enforced, that the sum of each response would be 100%. Figure 6
shows how each participant estimated the time they spent on the various
types of development activities they undertook while working with SMT.
The participants are sorted by their answer to the fi rst question. Participants
whose responses did not add up to 100% have been normalized and are
marked with asterisks.

The results show a marked variance in activities undertaken with the toolkit.

268

Given that these results come from after only a short time using SMT, it
makes sense that, for many participants, searching for information and
copying code examples into the system were dominant tasks. For eight
participants, more than half the time was spent on the core prototyping
activities of tinkering with code and playing with ideas.

Questions about API Usability. Table 1 shows the response breakdown for a
series of questions related to the various features of SMT. First impressions
of the students indicate that they thought SMT was easy to use (Q1, Q2,
Q4), succinct (Q3), predictable and transparent (Q6, Q7, Q8, Q12), and
fl exible (Q9, Q10, Q11, Q13). Comments included “The concept of zones
and sub zones does work well and provides an easy hierarchy to follow” (Q6)
and “[It is] easy to have a short development cycle with save and run” (Q9).
There is evidence that some students found it easy to make errors or slips
(Q5), indicating our error checking and compile-time warnings could be
improved. In particular, several participants lamented the lack of a standard
debugger in Processing. Also, students indicated that they did not use the
toolkit in new and different ways (Q14, Q15), which was likely due to the
brevity of their experience with it.

Table 1. Responses to the questions asked in our questionnaire.

Suggestions. Twelve participants responded with specifi c suggestions
for improvement of SMT. Seven of the responses in some way requested
better documentation, often specifi cally requesting example-based
documentation. Two of the responses recommended changing SMT to
better follow object-oriented design. Two responses requested features
from more a complete IDEs like Eclipse (which was related to the Processing
environment and not SMT). Two responses were generally positive

269

comments, e.g. “nice and adequately built toolkit”. One response was a
specific feature request for improvements to the zone rotation process.

Student Projects. The projects the students completed as part of their course
mainly involved the design of a prototype user interface. Various methods
of design were taught and encouraged, including sketches and storyboards,
paper prototypes, and software prototypes (created in Processing). The
software prototypes used SMT to manage the touch interactions in the user
interface. Prototypes developed with SMT ranged across a wide variety of
topics, including mobile workout coaching for a phone-sized device and
transit planning for a wall display, demonstrating the flexibility of SMT
across domains and hardware.

Discussion. There were pragmatic challenges in running a classroom-based
study in our own classrooms. One issue was that we were not granted approval
under research ethics to incentivize our participants in any way, including
through means unrelated to the course, such as monetary remuneration.
In addition, we did not allocate class time for the administration of the
study. Thus, requesting students to complete an optional and anonymous
questionnaire on their own time with no reward contributed to our low
response rate. We also hypothesize that the specific design of some of the
questions, based on the Cognitive Dimensions model, may have intimidated
students due to unfamiliar language referring to “notations”.

The suggestions received in the questionnaire likely reflect participants’
enrollment in a traditional computer-science program: they expected a
powerful IDE and object-oriented style. To respond to these, we improved
the documentation and the curriculum to explicitly help advanced students
work within Eclipse in an object-oriented style if they chose to do so. We
improved SMT and its documentation based on student feedback and
several months of refinement with our users through the open source
deployment before offering one of the courses again, with a revised study,
as discussed in the next section.

Follow-up Evaluation
Based on experiences with the first use of SMT in teaching multi-touch for
human-computer interaction, we made many improvements to the toolkit,
including extensive documentation, online tutorials, and examples which
illustrated each Zone type and method. Advanced examples and tutorials
illustrated functionalities such as custom picking and viewports. In addition,
we simplified our study method and conducted a second round of evaluation
at one university (the second university was not offering the course).

Method
Participants were recruited from a fourth year computer science course (the
same course for which results of the first study are reported). At the end of
the semester, after two laboratory activities using SMT, and after using SMT
to create prototypes for their term project, a questionnaire which focused

270

on ease of learning SMT was administered. Demographic data on years of
experience and self-rated programming skill was collected.

Again, students were invited to grant permission to use the code and images
from their fi nal group project, with optional acknowledgement to them, for
the purpose of analysis of the toolkit. We received a total of 18 responses to
the questionnaire and 7 groups provided unanimous permission to evaluate
their projects for the purposes of this study.

Figure 7. Ease-of-coding questionnaire results from follow-up evaluation.
Participants are grouped by skill level as indicated on the left.

Results and Discussion
Students indicated an average of 19 hours experience with SMT (min: 4,
max: 80). The large spread is expected as they were using SMT as part
of a large group project where greater coding responsibilities may have
been delegated to some students. Our questionnaire contained a series of
questions investigating how long it took to learn the toolkit (from one hour
to several months). All but three students indicated “agree” or “strongly
agree” with feeling comfortable using the toolkit after a few hours, and all
students but one were comfortable after a day. The one remaining student
(skill level=4, hours of use=40) indicated “neutral” for all time periods. In
the analysis which follows, we divided students into two groups: novice
(self-rated 1–4, n=8) and expert (self-rated 5–7, n=9). A summary of
questionnaire results by skill level is found in Figure 7.

Q1 indicated that most students of all skill levels found it easy to start using
the toolkit. Q2 shows a split, with novices expressing more challenge with
customizing and changing the toolkits functionality. This is not concerning
as 75% of experts did not fi nd it diffi cult, and this is an advanced function

271

which normally would not be used by novices. Q3 showed that all students
found it easy to test their work. Q4 again reveals a split between 25% of
experts who had some difficulty playing with new ideas, and 64% of novices
who had some difficulty. Both experts and novices found the code readable
(Q5). The results on ease of debugging were similar between groups, with
around 30% indicating some difficulty debugging. 14 students provided
specific suggestions for improvement. Of these, 6 corresponded to the
Processing IDE (e.g. desire for code completion). 8 comments related to
feature and improvement suggestions for SMT, with 7 students suggesting
further improvements to the online documentation, including coded
examples for every method.

Students created a wide variety of prototype applications for multi-touch
table and wall displays, including transit planning, digital board games,
personal health monitoring, and a prototype public display providing access
to outreach services for the homeless, pictured in Figure 8.

Figure 8. Example screens from a student term project created with SMT, showing a
public kiosk interface to provide information about services for the homeless.

Overall, the results of our questionnaire indicate student satisfaction with
SMT across skill levels. Concerns around ease of debugging likely relate
to the use of runtime warnings (e.g. if a student creates a zone called
“OKButtonZone” without the “drawOKButtonZone” method, a warning is
generated at run-time instead of compile time). This is due to the use of
reflection and the capabilities of the Processing IDE. Students self-rating as
novice did also indicate some difficulty playing with new ideas, revealing
that for this group, further improvements to code simplicity and training
materials are needed. We leave this for future research.

Real-World Use
SMT has been developed and actively supported for two years, during
which it has been used in two human-computer interaction and interface

272

design courses at two different universities across multiple semesters (for
a total of four classes) to help students learn to develop medium fidelity
prototypes of their multi-touch designs. Our toolkit has also been used for
the development of research prototypes in at least six graduate student
projects.

Figure 9. Graduate research projects TandemTable (left) and,
 Pandemic (right), created with SMT.

Feedback from the use in these real-world projects has been mostly
positive, with students able to create interesting and sophisticated multi-
touch designs, while not requiring significant in-class time to learn how
to program. Students were instead able to focus their learning on design
methods and evaluation techniques. Graduate students commented on
the ease with which they could rapidly prototype, mentioning how in most
cases the development took far less time than their previous experience
with Application Programming Interfaces such as Windows Presentation
Framework and C#.

We feature two graduate student research projects using SMT in Figure
9. The first is an assistive application for the tandem language learning
method. It was developed in order to study how interactive tables can be
used to augment the language learning process (Paluka and Collins, 2015).
The second is a multi-touch implementation of the Pandemic board game
(Chang et al., 2014). It was developed in order to study how knowledge
of past game events may change people’s strategies and behaviors while
playing turn-based games. SMT has also been used to develop and publish
a multi-touch visualization application by a research group not affiliated
with the SMT authors (Dai et al., 2015). While the graphical rendering
capabilities of the Processing environment were helpful to these projects,
specific features of SMT were also critical to their success.

SMT is a free and open source library. Its codebase is currently hosted on
GitHub at http://github.com/vialab/smt. Being hosted in a public and easily
accessible venue holds many benefits to a toolkit. One of these benefits
is the feedback and input from people from all over the world, whom we
would never otherwise have been given the opportunity to interact with.
SMT’s GitHub page regularly receives 60+ unique visitors per week. Not
including the authors, SMT’s GitHub page has been followed by 26 people,

273

and starred by 31. In addition to this, we have received and dealt with many
bug reports and feature requests from users around the world.

Conclusion and Future Work
We have created the Simple Multi-touch Toolkit, which is a simplified
software toolkit for the Processing programming language. It is designed to
reduce the amount of knowledge required and the complexity involved in
programming multi-touch applications. Although our toolkit simplifies multi-
touch programming, seasoned developers are afforded many advanced
additional features, such as access to more low-level data structures and
many customization features. By combining SMT with a mouse-based multi-
touch emulator, users are able to develop their applications on machines
without interactive surfaces, which then run seamlessly on touch-enabled
surfaces. Cross-platform development is enabled through the integration of
multiple input bridges and native TUIO support. SMT has been successfully
used at multiple universities for developing research prototypes as well
as full-fledged applications. The toolkit has also been used in courses at
these universities for teaching concepts and skills related to HCI. Our web
resources include tutorials and teaching materials for using SMT in the
classroom and we will continue to support its use in teaching and research
environments. In the future, we plan to incorporate additional support for
more complex multi-touch gestures, to add automatic layout algorithms for
creating interfaces with multiple Zones, and deploy SMT for Android, which
is currently in private alpha development stage.

274

275275

SURFACE
APPLICATIONS

276

277

Surface Applications

Frank Maurer, University of Calgary

I
ntroduction
SurfNet’s fundamental research was guided by the needs of
industrial applications. Applications also provided test beds and
case studies for the research conduct by the SurfNet team. The
application areas were developed in collaboration with industry
partners, and provided promising vertical markets for digital

surfaces. SurfNet researchers were working with industrial partners on the
following application areas:

• Health Technologies

• Planning, Monitoring and Control Environments

• Learning, Gaming, New Media and Digital Homes

• Software Team Rooms

To illustrate the network’s contributions to on the application side, we
selected seven contributions for this book.

Innovative Health technologies promise to improve patient care while
reducing service costs. Digital surface technologies can be used in all areas
of health care, from hospital settings during treatments of conditions over
telehealth applications to provide medical services over a distance to the
prevention of illnesses through encouraging healthier behavior.

• Radiology Image Scrolling

• Towards At-Home Physiotherapy: Next Generation Teleconferencing
and Surface Based Interventions

278

• Discouraging Sedantry Behaviors Using Interactive Play

Planning, monitoring, and control activities often require people to combine
their expertise while working over a shared workspace. Surfaces allow the
group to simultaneously view and manipulate large, multi-dimensional
data. This improves collaborative decision-making and problem solving in
complex, time- and safety-critical environments.

• OrMiS: Use of Digital Surface for Simulation-Based Training

• TableNOC: Touch-Enabled Geo-Temporal Visualization for Network
Operations Centers

Digital surfaces create new opportunities for learning, gaming, and other
new media applications. Some of our partners were interested in social
gaming, serious games, and game play in MSEs. Others are concerned
with educational applications for digital surfaces. Large digital surfaces are
increasingly present in the home and public spaces.

• Beyond Efficiency: Intriguing Interaction for Large Displays in Public
Spaces

Developing software is an artefact-driven and highly collaborative activity
that is increasingly geographically distributed. MSEs create visual workspace
surfaces linked together in spite of distance barriers. The promise is that
distant-separated teams can collaborate more productively, and can
thus develop better quality software. Initial industrial partners are Pyxis
Technologies, Bederra, and CAE Professional Services.

• Surface Applications for Security Analysis

279

Radiology Image Scrolling

Louise Oram, Philippe Kruchten, and Karon MacLean

Introduction
To utilize the detailed information provided by today’s high-resolution
image capture technologies, such as Magnetic Resonance Imaging (MRI)
and Computed Tomography (CT), radiologists must examine ever-larger
image sets. It is not uncommon for multi-trauma CT scans or coronary
CT angiograms to have data sets of 4000 images (Andriole et al., 2011).
Diagnosis entails a complex, time-pressured visual search task, where target
conspicuity, background clutter and other attentional factors can infl uence
the radiologist’s ability to detect anomalies (Andriole et al., 2011), and
radiologists are put at substantial risk of repetitive strain injury (Goyal et al.,
2009).

Figure 1. Sketch showing the idea of a image slices creating a stack.

280

Radiology images are currently mostly viewed as single 2D slices (Andriole
et al., 2011, Atkins et al., 2009), arranged in a stack through which is scrolled
through depthwise. The main interaction tool is generally a scrollwheel
mouse, which is basically unchanged since 1995. Image stacks have evolved
towards continuous media streams from their humble beginnings as single
x-ray images. Effi cient perusal demands fl uid, controllable interaction akin
to video scrubbing (Matejka et al., 2013), as has been demonstrated with a
haptic scrollwheel (Snibbe et al., 2001).

Meanwhile, the daunting scope of the image-viewing task makes it a
candidate for semi-automation, e.g. computer-aided detection (CAD) of
anomalies in images (Doi, 2005). Such algorithms are tuned to fi nd all real
anomalies (true positives) at the cost of substantial rates of false positives,
which radiologists must then distinguish. As it takes 5-7 seconds to re-
evaluate a CAD-identifi ed nodule (Rubin et al., 2005) there is clearly a cost
to potential time and accuracy gains. Similar issues exist for annotations
from other sources, e.g. other radiologists, in redundant procedures and
peer reviews or training reviews.

Figure 2. Image of lungs, with potential lung nodules detected (from: Armato S.G.
et al., Radiology 225: 685-692, 2002).

Stack annotation can affect detection accuracy (Alberdi et al., 2004; Doi,
2005). Of concern is context bias (radiologists’ diagnostic sensitivity depends
on expected prevalence of a given anomaly (Egglin, 1996)); and automation
bias (CAD misses particular cancer types), and learned dependency could
lead the user to miss anomalies too.

How might alternative annotation presentation affect bias? CAD data is
now presented as visual highlights, which may be more likely than another
modality to infl uence what the radiologist sees at perceptual and attentional
levels. If integrated with care haptic highlights might also avoid an identifi ed

281

risk of degrading the decision process through simple sensory overload
(Manning et al., 2005): highly tasked visual systems and the noisy hospital
environment.

Radiologists, like most people, are creatures of habit and therefore adding
a specialized device or compromising familiar mouse functions will likely not
be accepted. They heavily use other manual tools (such as the keyboard &
dictaphone), and transition swiftly between GUI pointing and stack strolling.
The x-y mouse is best for pointing (Goyal et al., 2009), and its ease of use
and familiarity make it favored relative to alternative input devices in this
setting (e.g. (Sherbondy et al., 2005)).

In this work, we aimed to streamline the radiology image-scrolling task,
investigating whether alternatives in user’s input mobility (finger/hand
movements used for scrolling control) can improve stack navigation; and
how modality of annotation display and scrolling mechanism impacts signal
detection patterns.

After analyzing 19 radiologists’ work via observation and/or interviews,
we prototyped augmentations to the standard mouse (Figure 3) which we
hypothesized could support (a) more efficient image scrolling (with more
fluid interaction) and (b) attentionally improved annotation display (in the
haptic modality). We obtained qualitative feedback from our radiologists
on these prototypes and the interactive techniques they support; and
examined impact of interaction and display on detection rates in a
controlled, abstracted study with non-radiologists (Oram et al., 2014).

The Radiologist’ Work Environment and Constraints
To view images, radiologists use two or three high-resolution LCD monitors,
a mouse for stack navigation and GUI navigation, and keyboard and
dictaphone to transcribe diagnoses. Data is provided via a Picture Archiving
and Communication System (PACS): workstation, software, and network
for image storage and retrieval according to industry standards. PACS are
sourced by health authorities as major capital investments from a small
number of medical imaging vendors, and have proprietary elements.

Viewing Images by Scrolling
Scrolling is integral to image review. Computerized Tomography (CT) image
consumption is faster with a stack than viewing as tiles (multiple images
visible at once), probably due to eased perception of 3D structures (Mathie
and Strickland, 1997). Radiologists must scroll at different speeds, stop, and
reverse to compare or examine locations. They are trained to review specific
anatomical structures, and make successive passes focusing on each of
these in turn.

PACS workstations typically support two scrolling techniques: scrollwheel or
click-&-drag. Both employ position control (scrolling distance is proportional
to the position of mouse or angle traversed by scrollwheel). Atkins et al.

282

(2009) compared scrollwheel and click-&-drag techniques to a jogwheel
(a rate control device: scrolling rate is proportional to input position), and
found that most radiologists preferred the more familiar position control
even though some were faster with rate control. Relative movement rates
were generally fastest for the wheel/click-&-drag combination, slowest with
wheel alone, and in between for jogwheel (Atkins et al., 2009). Sherbondy
et al. used a tablet and stylus for scrolling, and found that position was
faster than rate control for finding a target in a CT stack (2005).

Beyond the Mouse, and Direct-Touch Sensing
Multi-touch sensing has become a ubiquitous manual control. In an early
mouse example, Hinkley et al. explored touch sensing near the scrollwheel,
and found it a useful discrete scroll alternative to the wheel, e.g. tapping
to page up/down (Hinkley et al., 1999). Villar et al. considered multi-touch
in five desktop mouse form factors, finding it could extend control degrees
of freedom and support different input modes, mitigating need to switch
between devices (Villar et al., 2009). They advised locating touch-sensed
areas in easy reach of one hand posture, and cuing their location.

A pen and tablet solution showed decreased times relative to a mouse
for the radiology task of outlining a region of interest (Dix et al., 2010).
However, switching between different devices may hinder radiologists’
workflow. Direct-touch reduces the need for device switching, but creates
occlusion (Vogel & Baudisch, 2007) and fatigue from unsupported hands
(Wang and Ren, 2009).

Other desk-supported variants have diversified interaction. The “Rockin’
Mouse” adds a degree of freedom; while faster than a normal mouse in
3D, scrolling was not studied (Balakrishnan et al., 1997). Many other control
movements could be used with a mouse-like device, but have not been
explored in the radiology setting.

Haptic Feedback in Support of Scrolling
Akamatsu et al. found that for a pointing task with a mouse, tactile feedback
(pin pushing into fingerpad when on target) was quickest, and no feedback
slowest for final positioning times (Akamatsu et al., 1995). Levesque et al.
saw variable friction feedback speed target selection on a touch screen
(Levesque et al., 2011). Tilting a mobile device to scroll was augmented so
the user felt a vibrotactile (VT) buzz when they transitioned to the next item
on the list. VT feedback lowered task completion time, and position was
faster than rate control (Oakley et al., 2004).

These results suggest that haptic feedback on possible targets will give
modest performance gains, even if the system does not know where the
user is heading. The prevalence of detents on a mouse in a radiology setting
indicates radiologists may be receptive to this.

283

Computer Aided Detection (CAD)
Most CAD research focuses on validating that CAD information, provided
as visual image annotations, improves radiologist detection sensitivity and/
or speed (Doi, 2005). However, annotations overlaid on the stack affect
what radiologists see. Even when biased towards finding everything CAD
misses 20% (Doi, 2005), and also suffers automation bias. Radiologists
attending to annotated areas are more likely to miss artifacts not found
by the CAD. Alberdi et al. found a lower detection rate for users given
CAD information in comparison to those who were not; here, the largest
difference was seen in cancers not found by CAD. They hypothesized a
bias effect, where users calibrate to the expected prevalence of cancers
and expected proportion of cancers missed by CAD in the current data
set (Alberdi et al., 2004). Additionally, a criticism of many CAD studies is
that they contain an unrealistic proportion of cancers in their data sets, and
radiologists know this (Alberdi et al., 2004). We have not seen studies that
modified how CAD annotations are displayed; yet this may help mitigate
the detection bias that CAD produces.

Rubin et al. (2005) saw CAD had a significantly higher sensitivity to finding
lesions missed by a first human reader, in comparison to a second human
reader. However, this comparison posits unrealistically that the user of the
CAD annotations would accept all true positives and reject all false positive
CAD detections.

In low-dose CT images, a CAD scheme detected 83 percent of lung nodule
cancers (on images with on average 1-2 nodules), with 5.8 false positives
per scan (Doi, 2005). Another scheme (run on different scans, containing
some potentially more subtle cancers) detected 80 percent, with 2.7 false
positives per scan. In our experiment we therefore manipulate annotation
display assuming a detection ratio of 80% to align with current CAD
performance.

Table 1: Task Examples
1. Identifying or finding a specific piece of anatomy: The radiologist
looks for an object or area of interest in one anatomical plane, looking
through several slices to find and properly identify it. If unsure, or things
are unusual, then s/he may look at the area in another plane (or several
other planes if they are available). Can cross-reference a point between
different planes, to see the location in other planes. Additionally, they may
adjust the window/level to get better contrast between the object and its
surrounds.

2. Defining the edge / size of something: The radiologist may want to
know the size of an object, or if it is encroaching on the area of other
anatomy. Window/level may be used to get better contrast of the object
to its surrounds. After looking at the object in several planes, they choose
a specific image, or multiple images, to outline, circle, or measure the
diameter of the object.

3. Tracking / connecting objects: The radiologist follows a part of the

284

anatomy through several slices to check for abnormalities. The radiologist
moves back and forth through the image slices while watching the area
of interest. If they feel they have missed something, or loose track of
the object they may slow down and watch more carefully for a subset of
the image slices. This is repeated as many times as needed for different
anatomical parts, usually by organ system but sometimes by area (such as
in the brain).

4. Comparing two images (old and new): The goal is to look for interval
change: differences between the sets of image. Do new objects appear,
have old objects enlarged? The radiologist brings up both sets of
diagnostic images and looks at the same plane and area in each image
side by side. They scroll back and forth in each set of images, comparing
the areas of interest (can link the two images so they scroll together, but
the slices may not land at exactly the same spots). They may re-measure
objects that were found in the first diagnostic to see if they have changed
in size.

5. Identifying the makeup of something: The radiologist may want to
know what something abnormal is composed of. They look at the item in
several planes, and see the attenuation of the item. They may adjust the
window/level to get the best contrast with the surrounds, or to see colour
differences within the object. To know the density of the item from the
imaging they can select part or all of it and see the density number.

6. Getting a second opinion: If the radiologist is unsure of something,
less familiar with it, or finds something unusual, they may ask the opinion
of another radiologist. Another option is to look up papers on the topic
to help confirm the diagnosis or learn about more nuanced aspects they
cannot remember off the top of their head.

Approach
Motivated by a general awareness that radiologists were not benefiting from
30 years of interaction advances, and were subject to ergonomic stressors,
we observed radiologists and encapsulated their work in task-examples
(Table 1). The subsequent analysis of these tasks (through questionnaire
and interview) revealed that they were important and frequently performed
tasks (Oram et al., 2014). These tasks rely heavily on stack scrolling, and as
such we moved forward with that as our design space.

We iteratively prototyped and reviewed with domain experts several
concepts for improving interaction. The scroll wheel mouse was used as
the baseline for both scrolling with the wheel and click-&-drag scrolling
(both position control scrolling techniques). A touch-scrolling mouse (also
position control) was used to investigate if this method of scrolling works
well for navigating stacks. Lastly, a mouse that could tilt back and forth was
created and used to enable rate control scrolling as well as diversify the
hand movements that can currently be performed on a mouse.

285

Figure 3. Prototypes. From left: Touch, Tilt, Wheel / Click+Drag.

Because data annotation is crucial to workfl ow scalability, yet there are
many concerns about resulting bias, we wished to see if haptic and visual
annotations differed in bias causation. Therefore all of the prototype devices
had a pager motor under the top surface, so a haptic annotation could be
given to the user through their hand.

We conducted an experiment with an abstracted detection task that
utilized lay users in lieu of hard-to-access and time restricted radiologists.
The abstracted task was created to mimic a simple search task in a
radiology stack. More specifi cally, we tried to emulate the task of a trained
radiologist scrolling through a lung CT image stack while looking for and
marking potentially cancerous nodules (a case of Task Example 1). In real
stacks, lung images exhibit bronchi (tubes feeding into small sacks called
bronchioles). The bronchial tree can look similar to, but have slightly different
characteristics, than cancerous nodules. We created a stack with randomly
placed rectangles of varying grey colours, and the subject needed to fi nd
the perfect square (which was a grey in the middle of the colour range). This
can be seen in fi gure 3, where the perfect square is outlined on the right
image. To mimic CAD we correctly annotated 80% of the squares while the
other 20% annotated an incorrect rectangle.

Figure 4. Images from abstracted task. Right image shows visual target annotation.

Results & Discussion
The study was run on 12 lay subjects, and the ordering of the devices and
annotation modality was counterbalanced. They scrolled through the image
stack looking for the perfect square and hit a button when they found it. The
subjects were instructed to complete the task quickly and accurately.

286

Completion time exhibited a broad and heavily skewed distribution:
participants varied in the care they took (often trading accuracy for speed),
with trials tending to go long if they did not fi nd the square in the fi rst
pass. The targets were placed at different distances from the start point
to mimic reality, and although each subject had the same set of distances
this increases the variability in our data. Conventional models like ANOVA
and GLM (general linear modeling) require normality. ANOVA can also only
treat whether or not they got the trial correct as a variable, whereas a Cox
model can use this factor to censor the data. Further, completion time and
accuracy were not fully independent since with enough time a correct target
could always be found in our abstracted task.

We therefore used a proportional hazards model (Cox regression (Andersen
& Gill, 1982; Cox, 1972)) for completion time, which assumes that if given
more time users could answer correctly. Non-error trials have all the
information needed; error trials have partial information (we only know they
did not fi nd it up to a certain time).

Figure 5. Survival likelihood (Cox regression) vs. projected completion time.

As you can see from fi gure 5 the combined haptic and visual annotation
afforded faster detection, while haptic alone was slowest and visual alone
was somewhere between the two. The traditional and most familiar scroll
wheel supported the fastest task completion times by lay users, and was
preferred. In most metrics, touch scrolling was ranked second. However,
click-&-drag supported faster initial approach, even if it was to the wrong
area. Further explanation of the results can be found in (Oram et al., 2014).

Speed of initial approach along with familiarity, is likely why the scroll wheel
and click-&-drag work well together in the radiology environment. However,

287

novel input methods (e.g. a tilt or rocking motion associated with rate
control scrolling) were disadvantaged by their newness and less optimized
implementation. Because the scrollwheel has known ergonomic issues from
excessive repetitive movement, alternate methods still need to be explored.

In the emerging practice of incorporating annotations (from CAD or other
radiologists) into radiologists’ workfl ow, we showed that multimodal cues are
a promising approach, showing task speedup without error degradation, for
a task abstracted to non-experts. Radiologists are heavily visually loaded,
and may benefi t from information provided through a less loaded modality,
even when redundant.

Radiologists were interested in reducing the repetitive movements
associated with the mouse that occur often with scrolling (e.g. clutching
with the mouse wheel). This encourages us to continue to refi ne our Tilt
implementation and test it following longer learning, as its rate control
approach while continuing to support other functionality. Multi-touch
would also allow many more potential improvements in radiology image
interaction, via the mapping of gestures to different tools that could reduce
the need for modal interaction with PACS workstations.

Final Prototype
We improved and combined the best performing features found in the
scrolling input and annotation types evaluated above, to create a prototype
that worked as a conventional mouse with the added abilities to (a) touch-
scroll, and (b) tilt backwards to access rate control scrolling. We began
with a Microsoft Wedge mouse, added a rocking base (Polymorph™),
and sensed tilt with a potentiometer (an accelerometer would confound
translation with tilt). An Arduino relayed mouse signals, and a tactor was
installed underneath the touch surface (Figure 6).

Figure 6. Modifi ed prototype.

288

We then took the modified prototype to the workplaces of 3 radiologists
(2 previously interviewed, 1 new), demonstrated its movement and haptic
feedback (in context of our abstracted test task populated with radiology
images) and informally discussed its potential usefulness with them.

Given existing customizability of PACS setups, radiologists reiterated their
receptivity to the idea of a personalizable mouse. Their preferred speed of
scrolling is highly personal and varies depending on the type of stack, so
the rate control could have several preset speeds (potentially controlled via
a slider on the side of the mouse). “The goal should be to customize the
mouse… in a perfect world once, and then to not have to fool with it after
that” [P1].

P2, an emergency radiologist, stated “The way that I look at a large data set
study is I fly through it once and get a birds eye view… I want to exclude
any immediately life-threatening conditions”. Further, in a diagnosis he
needed to access multiple stacks, and felt the haptic feedback would help
re-orient him when switching between them. He also indicated aesthetic
appreciation: “Ooh the haptic feedback I love”.

Sometimes radiologists need to re-read other radiologist’s image sets, e.g.
with trainees, to ensure quality of care. The haptic annotations could help
speed this review: “You mark up the image in a peer review, and then I go
through it to check whoevers work, and I can find immediately what they
were looking at – that is valuable” [P1].

P3 noted there might be “a temptation to go really fast”, and worried
that the haptic cues would encourage this, resulting in missing anomalies.
However, he further mused that it would be useful for very large data sets,
such as the lungs. He generally felt that “You have a problem and you
are trying to find a solution to the problem, and here we have a potential
solution to many problems”.

Unsurprising was some mention of potential integration issues: “Many of
our workflows are so refined over the years… because we are just used to
going through data sets in a certain way” [P2].

289

Towards At-Home Physiotherapy: Next Generation
Teleconferencing and Surface Based Interventions

Kody Dillman, Richard Tang, and Anthony Tang

Introduction
Hundreds of thousands of Canadians regularly sustain soft tissue injuries
best suited for physiotherapy intervention, but many of these Canadians live
in rural areas—away from the urban centres where most physiotherapists
practice. This chapter describes two threads of work to address this
problem: first, explorations of teleconferencing technologies to enable
physiotherapy “visits” with remote practitioners, and second, explorations
of at-home technologies that can support daily physiotherapy exercise. We
discuss promising avenues of inquiry, and outline paths for ongoing future
work.

For many injuries and movement disorders, physical therapy (physiotherapy),
can increase mobility and decrease disability for patients receiving treatment
(Tousignant et al., 2011). In the case of an injury like rotator cuff tendinitis,
a physiotherapist guides patients through (and assigns as homework)
exercises such as in Figure 1 in order to rehabilitate the patient. Those living
in cities, where most physiotherapists operate (Canadian Institute for Health
Information, 2011), tend to be served well by physiotherapy services. Yet,
those who live in rural areas, where manual labour is an occupational norm
(in Canada, over 18% of the population live in rural areas (Statistics Canada,
2012)), not only suffer a disproportionately large number of such injuries
(Peek-Asa et al., 2004), but do not have easy access to physiotherapy
professionals. As we learned from our design sessions with practicing
physiotherapists, asking rurally based patients to travel into the city to
access services can exacerbate many such injuries (e.g. sitting for hours
during travel can worsen a back injury).

Our goal is to design technologies to allow patients to perform physiotherapy
exercises from their homes. In particular, we envision near-future possibilities
through commodity hardware already in people’s homes, for example with
laptops equipped with web cameras, or in living rooms equipped with
commodity depth cameras attached to gaming systems (e.g. the Xbox
Kinect camera can model basic biomechanics of bodily movement). Using

290

these technologies, we envision patients speaking directly to professional
physiotherapists to receive movement guidance, or smart video-based
systems that can train, instruct, and correct patients when performing
exercises.

We are guided by three central questions in this work: first, what are the
communication practices in traditional face-to-face physiotherapy that must
be preserved; second, what challenges does video media space present to
these practices, and third, how can technologies be designed to overcome
these challenges?

We explore these questions in this chapter through two explorations. In the
first, we worked with physiotherapists to understand how to design tools
to enable patients to work with physiotherapists live—for diagnosis and
exercise training. In the second, we explored the ‘at-home’ case of doing
exercises between physiotherapist visits.

Our explorations in this space have resulted in four sketch/prototype systems
that point to useful directions for designers looking to support physiotherapy
in future systems. As a group, the sketches reflect our understanding about
how physiotherapists use the patient’s body and surrounding environment
to communicate with patients, the role of mirrors, and home exercise.

We make two contributions in this work. First, we provide insights into
a specific domain (physiotherapy) that can be used to guide design of
video media spaces for remote work in this area. Second, from this work,
we explore the concept of the body as a workspace, developing this
idea through both sketches and critical reflection of our experiences. Our
ongoing work involves designing tools for effective remote physiotherapy,
though the findings should also support other domains where it is important
to remotely teach activities that require specific movements (e.g. dance,
personal training, martial arts, etc.).

Physiotherapy Process
Physiotherapists work with patients through three phases of treatment:
assessment, at-home exercise, and follow-up. Activities in these phases
include teaching the patient exercises and correcting improper motions
through movement guidance, as well as constantly performing assessments,
since the physiotherapist must take measurements related to disability and
function to create an effective treatment plan. The patient also performs
exercises between sessions to build strength and/or flexibility. Assessment
and movement guidance may require hands-on interaction, which requires
collocation of the physiotherapist and patient. Follow-up sessions comprise
exercise, manual therapy (e.g. the physiotherapist physically massages the
shoulder), and discussions about home-treatment.

As a running example, we refer to a common exercise: external rotation
(Figure 1). This exercise is commonly prescribed for patients with rotator

291

cuff tendinitis, a condition that commonly results from overhead reaching
such as painting or window washing. In this exercise, the patient holds a
resistance band, keeps the elbows tight against their sides, and pulls the
band outward, their forearms pivoting around the elbows. While performing
such an exercise, there are a number of pieces to consider: keep the elbows
in tight, keep the forearms parallel to the ground, pinch shoulder blades
together, stand upright and do not slouch, do not rush, only go to a certain
extent, etc. This is a complex movement where performing any one of these
parts incorrectly renders it far less effective.

Figure 1. An example of a handout with an exercise that the physiotherapist might
prescribe to the patient. This illustrates the external rotation exercise.

Related Work
To set the stage, we discuss prior work that has demonstrated that
telerehabilitation can be a viable and effective means of restoring bodily
function. We then describe recent work that explored movement guidance
through visual feedback, and fi nish by discussing the various roles bodies
play in video media spaces.

Effi cacy of Telerehabilitation
Early pilot studies of telerehabilitation show promising objective and
subjective results (Lai et al., 2004; Russell et al., 2011; Tousignant et al., 2011)
with joint replacement and stroke therapy being common conditions for
study (Rogante et al., 2010). Much of this pilot work employs considerable
technology (e.g. sensors, haptics, and even virtual reality technologies) that
is readily available in research labs, but far less likely to appear in patients’
homes. Nevertheless, studies exploring the use of videoconferencing-based
telerehabilitation following total knee replacement report positive results
(Russell et al., 2011; Tousignant et al., 2011). For stroke rehabilitation, a
community-based approach using videoconferencing tools demonstrated
that patients showed signifi cant improvement in all treatment measures,
with additional mental and social benefi ts of group physical therapy (Lai
et al., 2004). Furthermore, there seem to be high satisfaction levels for
both patients and physiotherapists in spite of the lack of face-to-face time

292

(Tousignant et al., 2011). The literature suggests that assessments involving
coarse-grained detail, such as gross movement or patient environment,
are well suited for remote assessment (Cabana et al., 2010; Sanford et
al., 2013). However, in cases where physiotherapists must use touch (e.g.
feeling to check whether a joint is moving properly) remote assessment is
not possible.

Solo Physiotherapy at Home
Home-based Physiotherapy. Related to telerehabilitation works are home-
based physiotherapy systems for self use. These allow the patient to exercise
and receive feedback whenever they exercise, regardless of whether their
physiotherapist is available. Some prior systems used wearable sensors to
track patient limbs (Ananthanarayan et al., 2013; Ayoade & Baillie, 2014),
but commodity depth sensors like the Microsoft Kinect are showing promise
for at-home use (Doyle et al., 2010; Huang, 2011; Yeh et al., 2012). These
systems use visuals on computer displays to provide feedback. The visuals
range from pre-recorded video of a physiotherapist (Doyle, 2010; Huang,
2011) to stylized 3D representations of limbs (Yeh et al., 2012; Ayoade &
Baillie, 2014). Work by Ananthanarayan et al. (2013) is unique in that the
wearable sensor visually depicts the knee’s bend angle.

Patients using these systems lack the immediate one-to-one communications
of a physiotherapist either in-person or by telepresence. While this appears
detrimental to the patient: early studies by Ayoade & Baillie (2014) on their
prototype demonstrated that patients using such a system at home with
basic 3D visuals to supplement routine physiotherapist visits improved
more over patients using traditional methods.

Movement Guidance. Other recent research has explored teaching or
guiding users through movements, and applications using ideas from such
systems will likely prove useful for at-home exercise between sessions
without the therapists. For example, LightGuide projects a movement guide
onto the user’s hand, and guides the user through specific, fine-grained
gestures using feedback and feedforward cues (Sodhi et al., 2012). While
this approach seems effective, it may be of limited use in a physiotherapy
context, as many body parts are inappropriate for projection (and/or the
projections may not even be visible). MotionMA provides visual feedback
based on models of body and movement to guide a user in exercises
(Velloso et al., 2013), though this specific approach provides very coarse-
grained feedback, instructing the user to translate one or two bones of
interest vertically or horizontally. While these tools focus on communicating
through a visual channel, recent work has also made use of haptics to guide
people through exercises (Alizadeh et al., 2014) by simulating the touch this
person would receive from a collocated trainer or teacher.

Video Media Spaces for Physiotherapy
In his conceptual reframing of video media space research, Buxton describes
two fundamental conceptual “spaces” that bodies occupy in video media

293

spaces: people space, and reference space. People space is where one
reads expression, trust, gaze, where the voice comes from, and where one
looks when speaking to another—usually supported via an audio-video link
that focuses on the participants’ faces. Reference space is where people use
their bodies to reference the work, for instance by pointing and gesturing—
usually supported via a video link that focuses on participants’ arms as
they work over a flat, shared workspace (e.g. Tang et al, 1991). Thus in
traditional video media spaces, the performs at least two functions: first,
as a means through which people can communicate and express intention
and ideas verbally (i.e. through spoken language), as well as non-verbally
through facial expression; second, the body acts a means through which
shared reference is established, by allowing people gesture using their
hands—for example to point at things. Yet, in the case of physiotherapy
application domain, a person’s body plays the role of a “workspace” in that
conversation and communication occur about the body itself.

Thus, one of the principal challenges in designing video media spaces
for physiotherapy is that the frame of reference is reflexive. That is, the
workspace itself is one’s body, rather than an external entity. For instance, if
one were speaking about movement pain in a joint, one would point to the
joint, move to the angle where the pain begins, and point at the source of
the pain. Yet, this kind of approach only works well for parts of one’s body
that one can see; it does not work well for things that one cannot easily see
(e.g. one’s back). These are new kinds of problems that we have not yet
encountered in traditional video media space work.

Summary
Prior literature has shown that telerehabilitation can help provide people
with effective treatment for ailments, even when they are not co-present
with a therapist (e.g. Tousignant et al., 2011; Russell et al., 2011). Yet, none
of this work explores the specific communication challenges that arise as a
consequence of physiotherapy.

Instead, considerable work has investigated how we can remove the
therapist altogether, focusing primarily on the movements and training
and teaching exercise (e.g. Anderson et al., 2013; Velloso et al., 2013).
In our work, we address how the body needs to play a reflexive role in
physiotherapy, because the discussion and communication in the media
space is about one participant’s actual body.

Exploration 1: Design Sessions with Physiotherapists
Physiotherapists teach patients strengthening and flexibility exercises,
correcting improper motions through movement guidance, and providing
hands-on manipulation for assessment and therapy. Yet, what kinds
of support do patients and physiotherapists need if we are to design
technology to enable this process remotely?

We recruited five actively practicing physiotherapists who participated

294

separately in design sessions that consisted of interviews about their
practice, observation of their use of technology sketches (as we designed
and implemented them) in mock physiotherapy sessions, and discussions
about their experiences with the sketches to support further iteration.
Our primary interest was in understanding and designing to support
their communication practices when working with patients in a remote
physiotherapy scenario.

The earliest meetings with physiotherapists were exploratory, and served
to provide us with a basic understanding of how physiotherapists work in
practice. This included: interviews about the types of treatment provided,
what a typical session looks like, how health issues are assessed, and how
treatment is delivered in person. After getting an understanding of the
process, we engaged in collocated mock treatments with the therapists to
experience physiotherapy from the patient’s point of view. In these mock
treatment sessions, one of the authors acted as the patient to experience
the session fi rst-hand.

Technology Sketches for Live Physiotherapy
Sketching is an important part of the design process, and is a cheap and
effective way to approach a new problem space (Buxton, 2010); where
prototypes are meant to be didactic and refi ne an idea, sketches are
evocative and allow for exploration. Rather than creating prototypes, we
chose to create simple technology sketches through the course of our
discussions with physiotherapists, which allowed us to explore the remote
physiotherapy space without committing to any one solution.

We iteratively designed and built three different sketches: a mirror sketch,
where the physiotherapist and patient are represented as if they were in a
mirror together, an annotation sketch that allows physical therapists to draw
on and around the body of the patient, and a targeting sketch that allows a
physiotherapist to defi ne a path of targets for the patient to move through.
These sketches were built using C#/WPF, large projection screens, and the
Microsoft Kinect camera. To mimic remote sessions with the physiotherapists,
we created a dual setup to enable paired videoconferencing in our lab, and
used these in our design sessions.

Figure 2. View of the physiotherapist’s (right) and patient’s separate physical

workspaces, with shared workspace displayed on each participant’s own display.

295

Sketch 1: Mirror for Shared Discussion. Figure 2 illustrates the fi rst sketch,
a videoconferencing environment where each participant is made to
feel like they are sharing a mirror with remote participants (Morikawa &
Maesako, 1998; Ledo, et al., 2013). The depth cameras respect the relative
spatial relationships between participants as illustrated in Figures 2 and
3 (Ledo, et al., 2013). We based this fi rst sketch on our own experiences
in physiotherapy, where the physiotherapist stands with the patient in a
mirror in order to show/teach exercises. Communication occurs through the
mirror, where the physiotherapist can demonstrate an exercise alongside
a patient’s attempt. The physiotherapist can also gesture at parts of the
patient’s body if it is not moving or positioned correctly. Figure 3 illustrates
client perspective.

Figure 3. Screen capture of mirror sketch. Inset image shows view of the patient’s
space (enhanced for clarity).

Sketch 2: Annotation of the “Bodyspace”. Our second sketch focused on
providing therapists with a means to annotate the patient’s body and the
area around it. A therapist can use this by freezing the video scene (with
the patient’s body in it), and the therapist can annotate the image using a
variety of colours and brushes to illustrate different aspects of movement,
or orderings (e.g. blue movement comes fi rst, then red, etc.). As Figure 4
illustrates, the tablet provides the therapist (and/or patient) with a view of
the video scene. The live video scene can also be annotated so that, for
example, the patient can know the extents of a movement (i.e. the arm
should not move further than point X, or lower than point Y).

Figure 4. Illustration of the physiotherapist using annotations to guide the patient’s
hand. Inset image shows the physiotherapist’s view of the tablet.

296

Sketch 3: Target Paths for Movement at Home. To support at-home
exercises, we designed the third sketch to allow a physiotherapist to defi ne
a movement path through space (through a set of targets) that a patient
could later “retrace” at home (Figure 5). Here, we drew on themes from
prior work emphasizing notion of feed-forward and feedback in guiding
movement through space (Bau & Mackay, 2008; Freeman et al., 2009; Sodhi
et al., 2012). The 2D targets are displayed on-screen “in” the patient’s
environment, with the size of the target representing its relative depth in the
scene. The therapist places targets by physically moving her own limbs in
space, and communicating with the system through voice commands. Once
the therapist has placed the targets, the patient can then perform exercises
by correctly moving through the targets, with visual feedback given if the
target has been reached (Figure 5, middle and right).

Figure 5. The patient interacts with targets that have been placed by the
physiotherapist. Target 1 is closer to the screen/camera than target 2.

Findings and Discussion
We summarise the fi ndings from our design sessions with the physiotherapists
in two categories here: communication and movement guidance, and
assessment and progress tracking. In each, we discuss current practices and
how the physiotherapists expected these practices to be augmented with
the sketches. Finally, we provide our own thoughts about how to deal with
these issues, while considering the body as a workspace.

Communication and Movement Guidance. Physiotherapists teach patients
new exercises and movements fi rst through demonstration, and second
through gesture; if these fail, they fall back to physically guiding the patient
through touch. The physiotherapist usually demonstrates the proper
exercise to the patient so that he can see the entire form. Therapists will
also use gesture, pointing at various body parts to indicate what should stay
still, what should move, and how far. This often happens in front of a mirror,
which makes it easier for a patient to see and understand how his body is
positioned and how he moves. In collocated treatment, the physiotherapist
can mark up the mirror to better train proprioceptive senses, or his awareness
of his body’s position in space (Stillman, 2002).

Conventional videoconferencing technologies do not provide a patient
with a view of himself, nor for the physiotherapist to meaningfully help
guide motion. The physiotherapists encountered issues in conventional
videoconferencing with the patient not understanding verbal instructions,

297

and the inability to point made clarification challenging. We also observed
issues with the way the conventional videoconferencing setup presented
different views for each person: the local view presented in the corner of
the display sometimes occluded the image of the remote person, causing
confusion. In contrast to the conventional setup, the mirror and annotation
sketches worked extremely well for the therapists. Placing the patient next
to the physical therapist in a mirror image (as in the mirror sketch), allows the
therapist to easily model the ideal version of an exercise. The patient can
then mimic the movement simultaneously, which is a way that people learn
movements (Schmit, et al., 2005). Some of our physiotherapists instinctively
stood beside the patient in the space. One thought it would be compelling
to overlay the images, as the therapist’s body could therefore act as an
explicit visual guide so the patient could mimic the movement.

The mirror sketch also allowed the therapists to make and use the same
gestures that they commonly use in collocated therapy to guide the patient
(Figure 3). Interestingly, as much as exercises are about movement, they are
also about keeping particular bodily parts still. To this end, the annotation
sketch could be used to provide a reminder to keep a body part still. For
instance, the external rotation involves proper positioning of the elbow,
shoulder, and back, so being able to quickly reference and mark joints is
necessary. For example:

(Drawing a dot on the patient’s shoulder.) So right there, I want you to
try and keep that point still while you lift your arm up and come back
down. (Patient’s shoulder moves away from dot.) And you can see how
it comes forward and comes up a little, so try and keep it more still in
space as you lift. [P5]

Similarly, the targeting sketch could be appropriated to help indicate to a
patient that his arm has moved too far one way or another (since the target
changes colour when the body part passes over the area).

Finally, there were multiple instances of the patient not being able to see
certain parts of the body. For example, one therapist attempted to get her
patient to perform a back exercise and asked him to turn his back to the
camera. Upon learning that the patient could no longer see himself, she had
him turn to the side as a next-best option. Incidents such as this prompted
discussion about: pausing the video so the patient can see their back, being
able to record and replay video, or having the patient hold a tablet to be
able to turn their back to the camera and still see a view of the back.

Discussion. As illustrated in Figure 1, even physiotherapy exercises that
seem simple are complex given the number of ways that they can go awry.
While a basic audio-video link is clearly better than an audio-link alone, the
mirror sketch added a new dimension to the interactions between therapist
and patient as described above. Nevertheless, a major limitation of this
communication is the inability of the physiotherapist to be able to guide
the patient through touch. While there are some emerging solutions to this

298

problem that, for example, explore haptics (Alizadeh, et al., 2014), these
typically require additional equipment and instrumentation. In the absence
of touch, employing new configurations of the video space (i.e. as a mirror)
may be the most straightforward way of addressing this communication
gap.

Our design sessions revealed two additional challenges arising from the
need to discuss parts of the patient’s body, with the body acting as the
workspace. First, the patient’s body is frequently in motion. Annotations
on the live video rapidly became out of sync with the patient’s body and
irrelevant. Second, the patient might not be able to see certain parts of
his body that might need to be annotated (e.g. his back), or that might
need to be discussed. We resolved this in our sketches through the addition
of a “pause” feature, which addresses the latter problem, but less so the
former (i.e. dealing with motion). Other possibilities could be to include a
“playback the last 10 seconds” feature that could be annotated, multiple
cameras, or bodily-tracked annotations (that follow the body even as it
moves in the camera view).

Assessment and Progress Tracking. A therapist tracks a patient’s progress
through recovery using both experience (i.e. “reading” a patient through
her hands), as well as with formal tools such as a goniometer (akin to a
protractor). Common measures include strength, flexibility, as well as pain.
Physiotherapists are trained to use touch to gain information and assess
the patient, which presents a major issue when touch is not possible, as in
remote physiotherapy. Visual inspection is also used by the physiotherapist
for assessment: for example, the patient might demonstrate an exercise for
the physiotherapist to assess visually, or she might also check for things like
skin tone or hair growth. Patients will also communicate a lot of information
through non-verbal cues, such as facial expressions and recoil: so-called
“soft-signals”, which might indicate pain or discomfort. The face, therefore,
must be visible.

For precise range of motion assessment, our participants felt that being
able to actively display joint angle information for patients would be
valuable, particularly if it was an automatic feature (skeleton tracking can be
used to approximate these values). When asked about the potential to do
assessments, P3 agreed that she could use the mirror sketch to assess her
back patients, though that she would “like to put sensors on them to have
an objective measure” of range of motion automatically. For example, in
the external rotation exercise, the physiotherapist may want to know how
the patient is progressing by measuring the angle between the forearm and
chest while pulling the resistance band.

The numbers are really good for motivation, and they need that to
stick with their therapy. They need to see that motivation. If they’re
thinking, “Oh my gosh, my numbers aren’t getting any higher”, they’re
going to be discouraged. [P2]

299

Discussion. While assessment of certain variables traditionally assessed
through hands-on interaction may never be practical or possible remotely,
certain visual assessments may be possible remotely using the features
afforded by the technology sketches. This should serve to decrease the
number of face-to-face appointments necessary, in turn easing the burden
on rural patients.

One of the major problems encountered with visual inspection and
assessment in remote physiotherapy is the fact that the physiotherapist
no longer has the space to work around the patient, and is limited to a
single-angle view when using videoconferencing. In collocated therapy,
the physiotherapist can get close to the patient for a “zoomed in” view,
and can kind of walk and “pan” around the patient for different vantage
points, and none of this is possible with a single-camera videoconferencing
system. Multiple camera views can begin to address this issue, and allowing
a therapist to remote control a video-capture drone in the patient’s space
may be an interesting alternative.

To support some range of motion assessment, the annotation sketch could
be used to mark the extents of a movement, and these annotations could be
compared across time to show progress. As a visual charting tool, this would
become immediately useful for the therapist and a useful motivational tool
for the patient. Similarly, playback of past attempts over time (compared to
one’s current progress) could be used.

The Body as a Workspace. Movement instruction is a complex and dynamic
task even when co-located, with motions requiring proper placement of
multiple joints and/or limbs at once. Current videoconferencing tools (e.g.
Skype) allow for some demonstration, but the separation of space between
the patient and physiotherapist makes discussion and movement guidance
in the patient’s workspace difficult. This separation creates some added
distance between patient and therapist, and cuts off their ability to gesture
at or manipulate the patient’s body, which is relied on for communication
in collocated therapy. Our exploration of physiotherapy shows us that
when the body becomes the subject of conversation, Buxton’s three-space
articulation of video media spaces (Buxton, 2009), is only useful conceptually,
as all three spaces are all merged into one (i.e. the patient’s body is all of
person-, task-, and reference- space). Retaining this unified presentation, as
we saw in the mirror sketch, eases gestural interaction, as well as facilitating
shared understanding of attention.

Yet, in general, having a body as a workspace in a video media space
presents a number of challenges for both the “teacher” and “student”
that need to be reconsidered due the fact that the subject of work and
conversation is a participant in the media space rather than a separate,
static entity that can be manipulated independently.

Challenge: Visibility. People cannot see certain parts of their bodies in

300

real life—we learn and receive feedback about muscles and movements
on our back through tactile and kinesthetic feedback, or with mirrors. The
traditional videoconferencing setup of one camera at one display is therefore
not ideal in telerehabilitation and other configurations or hardware should
be explored to allow areas of the body to be rendered visible. Patients
straining and twisting to see the screen are usually not performing exercises
correctly. Additionally, physiotherapists lose the ability to move freely
around the space of the patient during remote therapy. Multiple camera
and display configurations could address this issue (as in Physio@Home).
Physiotherapists suggested also providing patients with a tablet so that the
patient could always see the shared video feed regardless of the direction
he is facing.

Challenge: Annotations. Annotations are semi-permanent mark-ups on
the workspace that allow people to read/refer to ideas and information.
Because the workspace here is a person’s body and the space around it,
these annotations need to be “connected” to those body parts and/or the
space around it. For instance, our annotation sketch presented problems
as soon as a person moved (even a limb) in the video scene—arrows would
no longer point to the right body parts, or may even be pointing in the
wrong direction. Furthermore, those annotations were in 2D space, many
movements may be in the entire 3D space.

Challenge: The “workspace” is non-static. Particularly in relation to
movement guidance, the “workspace” is a moving, living, and breathing
entity. Because the patient can freely move about, and movements have a
temporal element, gestures and annotations about these movements also
need to have a temporal element. This is realized in YouMove (Anderson, et
al., 2013) and ChoNo (Singh et al., 2011; Carroll, 2012), where annotations
are layered as “tracks” that are only visible for specific durations. Yet, while
this solution works for an asynchronous situation, how can we design these
for real-time interactions when a remote physiotherapist is working with a
patient?

Challenge: Attention. Specifically in the context of movement guidance,
many body parts and joints may be in motion at the same time—how do
we draw one’s attention to the right point of interest? In mock sessions
with the physiotherapists, we noticed sometimes that deictic references to
body parts (i.e. “Move that upward”), if misinterpreted (e.g. moving the
hand upward rather than the elbow), would lead to situations where the
entire exercise would need to be reset. Thus, while annotation seems to
be effective for supporting body movement discussion, and recording for
playback (or slow-motion replay) and discussion should be explored further.

Exploration 2: Physio@Home for Exercising Between Sessions
We previously described sketches to enhance video conferencing
interaction between patient and physiotherapist, but these sketches still
require the physiotherapist to be present and working with the patient,

301

albeit through video conferencing instead of in-person. The patient must
still exercise at home on their own between routine physiotherapy sessions,
but will no longer have the physiotherapist to guide and correct their
exercise movements. The patient is now liable to forget their exercises, or
to perform them incorrectly and risk slower recovery or re-injury.

To investigate this problem, we developed a prototype system called
Physio@Home (Tang et al., 2015) to be used in patients’ homes, where
the patient will use the system while performing their exercises. The
physiotherapist models exercises for the patient and gives them the
recording fi les, and Physio@Home uses these fi les to guide and correct
patient movements. The purpose of Physio@Home is not to replace the
physiotherapist. Instead, it and similar systems supplement either regular
in-person visits or telepresence sessions as in the previously described
sketches to ensure patients are correctly performing their exercises while
away from their physiotherapist. The physiotherapist is still required to
diagnose their condition and provide exercises.

Characteristics of Movement
To guide exercise movements without a physiotherapist, we needed
to understand how physiotherapists describe movement and motion
of the body and limbs. We analyzed commonly prescribed shoulder
exercises and the ways physiotherapists taught them to develop a set of
important characteristics that physiotherapists use to communicate. These
characteristics are illustrated in Figure 6.

Figure 6. Characteristics of movement.
(Top, Left to Right) Plane/range of movement, extent of movement,

(Bottom, Left to Right) maintaining position/angle, rate of movement.

Plane/range of movement. This refers to the plane that the body part will
move along during the exercise. The range refers to the “start point” and

302

“end point” of this movement. For instance, during non-angled shoulder
abduction, the patient’s arm moves up along the frontal plane, starting from
a resting position to where it is exactly aligned with the shoulder.

Extent of movement. This limits how a body part’s motion can and should
deviate from the plane of movement. For example, during angled shoulder
abduction, the arm must maintain its angle relative to the body’s sagittal
plane.

Maintaining position/angle. For many exercises, certain joints need to
be kept in a fi xed position or at a fi xed angle. In the case of abduction/
adduction, the arm must be kept straightened, and the shoulder kept level
with the ground. Other exercises are stricter—for example, with an external
rotation exercise, the elbow needs to stay next to the body, and be bent at
90°.

Rate of movement. This refers to how fast a body part should move. For
some exercises, performing them slowly ensures the right muscles are being
used. This characteristic applies to a variation of the shoulder adduction
where the arm must travel slower as it returns to the patient’s side. In many
cases, an exercise does not have a set rate of movement and patients are
free to proceed at their own pace.

Wedge Visualization
We iteratively designed a visualization called the Wedge (Figure 7) using
these characteristics of movement for use in Physio@Home. The Wedge
consists of an arrow with a long stem to show movement path and an arc to
show the plane of movement. The arc is divided into a completed section
in green and the remainder of the movement in grey to show progress. This
conveys both feedback and feedforward, and offers motivation for the user.
When the patient is moving incorrectly from the recorded exercise, a red
stick-fi gure arm appears to show the required position and posture of their
arm.

Figure 7. Wedge visualization in Physio@Home.

303

Multiple Cameras
In addition to the frontally facing camera view, Physio@Home also provides
a secondary top-down view of the participant (Figure 8). We found
during early pilots that the single frontal view was insuffi cient for showing
movements in depth, often resulting in participants not knowing how far
back to move or what angle to maintain.

Figure 8. What the participant sees on-screen when using Physio@Home. (Left)
View from ceiling-mounted camera.

(Right) Mirror view from forward-facing camera.

We resolved this by mounting a camera in the ceiling. This allowed the
participants to see themselves from above, and thereby see their depth
alignment much easier. We can also draw the Wedge from this angle with an
additional visualization to clearly denote their depth alignment. The rest of
the Wedge’s features are also visible from this perspective. We implemented
the secondary view as just a top-down perspective for now. We imagine it
also being used for details the frontal mirror view alone cannot show—such
as close-ups of joints, exercises done behind the patient’s back, etc.

Findings and Discussion
We summarize our fi ndings on Physio@Home and discuss the implications
of the system’s design features.

Study. To evaluate Physio@Home, we performed a laboratory study on 16
participants recruited from the local university. We evaluated how closely
participants could follow pre-recorded exercises using the Wedge compared
to simply watching and mimicking an exercise video, as is currently available
for physiotherapy patients. We also evaluated the use of single and multiple
camera views to see if they could benefi t participant performance. Our
early results showed participants being able to follow exercises the closest
using the Wedge with multiple views. Overall, the Wedge outperformed
the video conditions and allowed participants to follow the exercises closer.

Discussion. Physio@Home was designed to be used independently from
a physiotherapist. We can also imagine it supplemented by live patient-
therapist video conferencing in future work. Physio@Home’s use of multiple

304

cameras may also benefit physiotherapists. One of the major problems
encountered with visual inspection and assessment in remote physiotherapy
is the fact that the physiotherapist no longer has the space to work around the
patient, and is limited to a single-angle view when using videoconferencing.
In collocated therapy, the physiotherapist can get close to the patient for a
“zoomed in” view, and can kind of walk and “pan” around the patient for
different vantage points, and none of this is possible with a single-camera
videoconferencing system.

Because the exercises at home between sessions play such an important
role in treatment outcomes, it is likely that supporting this activity well will
prove most beneficial to patients in the end. Given that physiotherapy
exercises are frequently dynamic (i.e. non-isometric), providing the patient
with exercise recordings being properly performed is more effective
than a static handout (Kingston, et al., 2013). These could be as simple
as recordings made during meetings with the physiotherapists. Currently,
Physio@Home only records the physiotherapist performing the exercises for
the patient to follow, but we could use the patient as a model (e.g. by using
a recording of the patient performing the motion correctly during a session
with the physiotherapist). These recordings could double as a mechanism
to track progress over time.

Conclusions and Future Work
Physiotherapy is an effective treatment for common injuries, but remains
difficult to access for many individuals. The work we present here represents
a starting point for designing telerehabilitation tools for physiotherapy.
Video conferencing tools need to be augmented to account for the fact the
body is now a workspace, and that lessons from video media space work
should be adapted here to support non-verbal communication (gesture,
gaze), though the dynamic and complex nature of physical movement will
need to be accounted for.

While the insight provided by physiotherapists regarding patient
communication was incredibly valuable, the lack of actual patient
participation is a limitation, and patients should be involved in future
studies. Nevertheless, the findings have been helpful in informing our work
moving forward, particularly as it relates to designing video media space
systems where a participant’s body is the workspace, and we see this work
as informing next steps for similar telerehabilitation tools.

305

Discouraging Sedentary Behaviors
Using Interactive Play

Regan L. Mandryk and Kathrin M. Gerling

(published in Interactions, vol. 22 no. 3, 2015)

Introduction
Regular physical activity has many benefits, including to a person’s physical,
emotional, and cognitive well-being (Tremblay, 2010). Although adults
should achieve 150 minutes of moderate- to vigorous- intensity physical
activity per week, only 15 percent of adults meet these guidelines in at least
10-minute bouts, and only 5 percent of adults meet these guidelines in at
least 30-minute bouts on five or more days per week (Colley, 2011a). For
children, the statistics are even more discouraging. Although kids should get
60 minutes of activity per day, only 7 percent of Canadian youth accumulate
60 minutes per day six days a week (Colley, 2011b). The exercise habits
adopted by children and pre-teens during this critical period can have
lifelong consequences in physical health and self esteem. To encourage
physical activity, researchers and developers in HCI have created a variety of
“exergames,” which encourage people to exercise by integrating exertion
into the game mechanics (e.g., Mueller, 2010). Many exergames have
focused on providing intense physical activity for players and have been
shown to yield sufficient exertion to obtain the aforementioned benefits to
a player’s well-being.

However, recent work among health researchers has shown that there are also
negative physiological consequences associated with sedentary behavior
and that these consequences are distinct from those that result from a lack
of physical activity (Tremblay, 2010). Although this may seem surprising,
physical activity and sedentary behavior are not mutually exclusive. Even if
a person is physically active (e.g., biking to work in the morning), she can
also be sedentary (e.g., by primarily sitting for the remaining waking hours);
the effects of too much sitting are physiologically distinct from too little
exercise (Tremblay, 2010). The potential negative health outcomes are of
particular relevance to populations who spend large parts of the day sitting,
for example, schoolchildren who spend many hours a day sitting at their
desks, and groups that struggle to gain access to opportunities for regular

306

physical activity, for example, people with mobility impairments and older
adults in long-term care.

Because of the potential negative effects on health, researchers are now
exploring the need for anti-sedentary guidelines to exist alongside guidelines
for physical activity (see Mandryk, 2014). As researchers who design digital
game-based interventions to promote health, we have been focused on
designing games to promote physical activity; however, these exergames
may or may not also work to combat sedentary behaviors. For example, a
game designed to encourage a jogger to commit to and follow through with
a daily jog will help a player meet the physical activity guidelines but will not
help to combat sedentary behavior over the remaining waking hours. There
has been little research into how the design of anti-sedentary exergames
should differ from exergames that promote vigorous physical activity.

In a recent book chapter (Mandryk, 2014), we presented and contrasted the
medical guidelines for physical activity and those for sedentary behaviors.
We identified five design principles that need to be considered for anti-
sedentary game design (see next section). We dub these anti-sedentary
games energames—games that reduce sedentary time by requiring
frequent bursts of light physical activity throughout the day. Here, we
revisit the design principles for energames and show examples of how
they have been used to design games that combat sedentary behavior
in three at-risk populations: schoolchildren, people who use wheelchairs,
and institutionalized older adults. Our work in this area is distinct in both
intention and execution from much of the work on exergame design. Rather
than designing for exertion experiences (e.g., Mueller, 2010), our goal is to
use the motivational pull of games alongside interaction design to decrease
sedentary time throughout the day.

Design Principles for Anti-Sedentary Energame Design
Design principles for integrating physical activity into games while fostering
player motivation include aspects such as the importance of providing
feedback on activity levels, drawing awareness to past and current
activity levels, providing feedback on goal achievement, leveraging social
sharing, and integrating activity into a user’s lifestyle. Based on these and
other exergame design principles, we identified the following five design
principles to foster energame design (Mandryk, 2014):

• Providing an easy entry into play. Lowering the barrier to foster
physical activity can be accomplished by offering players an easy entry
into play using accessible core game mechanics and controls.

• Implementing achievable short-term challenges to foster long-term
motivation. To engage players over a longer period of time, achievable
short-term goals can build self-efficacy and foster long-term player
motivation.

• Providing users with appropriate feedback on their exercise effort.
Providing players the opportunity to review their exercise efforts after

307

play or through in-game feedback can improve performance and foster
motivation.

• Implementing individual skill-matching to keep players engaged.
Adapting in-game challenges to match players’ individual skill levels is
one of the most important aspects of energame design, and is applicable
both for player-versus-system and player-versus-player games.

• Supporting social play to foster interaction and increase exercise
motivation. Supporting social play and fostering interaction between
players is a core component when trying to increase long-term exercise
motivation.

Here, we present some energame examples that follow these guidelines to
help reduce sedentary lifestyles in three vulnerable populations.

Building Energames that Interrupt Sedentary Behaviors
The goal of energames is to encourage people to break up sedentary
time with movement. Three populations who are at risk of the negative
consequences of sedentary lifestyles are schoolchildren who sit in desks
for much of the day, people who use wheelchairs, and the elderly who
reside in nursing homes. We have developed energames for each of these
populations, and discuss their design and evaluation.

GrabApple. We initially developed GrabApple to explore the space of
casual exergames—that is, computer games that players can learn easily and
access quickly, using simple rules and special game mechanics, to motivate
them to exercise at a moderate intensity for short periods of play (Colley,
2011a). Evaluated originally with young adults, we found that players were
able to increase their heart rate during play, which helped them improve
their performance on tests of attention and focus (Gao, 2012). This led us to
consider the use of GrabApple for schoolchildren who could gain the acute
cognitive benefits of breaking up sedentary time by playing a motion-based
game (Gao, 2014).

Gameplay. The goal of GrabApple is to pick up falling apples and avoid
touching the falling bombs (Figure 1). The avatar is controlled through
the movement of the player’s body, and the game uses the player’s body
weight as resistance to generate exercise through jumping, ducking, and
movement. Score multipliers and game mechanics encouraged jumping,
ducking, and periodically dashing to the keyboard.

Game input. The game used the Microsoft Kinect sensor to detect users’
body movements. In the Kinect version, the player’s position in space
controlled the x and y location of the player’s avatar. In a mouse-based
version, avatar position was controlled using the mouse cursor.

308

Figure 1. Screenshot of GrabApple.

User experience. We compared the physical exertion, affective state, and
player experience of children playing GrabApple with a sedentary version
of the game and traditional physical exercise used for activity breaks to
interrupt sedentary time at school (Gao, 2014). Our energame raised heart
rates and perceived exertion levels signifi cantly more than sedentary play,
but not as much as traditional physical exercise. Players rated their arousal
as higher after playing the energame (compared to sedentary play), and
rated the game as more enjoyable than traditional exercise. Students
also identifi ed benefi ts to concentration from light exercise during a short
break during the day and were interested in using a game to engage in
movement-based activities during breaks.

Although GrabApple was successful as an energame, it is not accessible to
players who use mobility aids such as wheelchairs. To address this design
space, we implemented and evaluated Wheelchair Revolution, a game for
people who use wheelchairs.

Wheelchair Revolution. We designed Wheelchair Revolution (Gerling,
2014b) with two goals in mind: First, we wanted to design a motion-based
game accessible for people who use wheelchairs, and second, we wanted
to support parallel competition between players who use wheelchairs and
able-bodied players.

Gameplay. Wheelchair Revolution is a dancing game similar to Dance
Dance Revolution, a popular motion-based game. The gameplay consists

309

of performing steps (indicated by falling arrows) synchronously to the beat
of a song (Figure 2). The player aims to perform the move indicated by each
arrow at the moment the arrow is in line with a target at the bottom of the
screen and is awarded points based on how well each step is executed.

Figure 2. Wheelchair Revolution being played by a person in a wheelchair and an
able-bodied player.

Game input. Players could use a dance mat, a game pad, or a wheelchair as
input. The wheelchair mode emulates dancing by requiring players to move
around with the wheelchair (forward, backward, and turning the wheelchair
to the left and right). Wheelchair movements are captured by a Microsoft
Kinect sensor. We implemented a variety of player-balancing mechanisms
to ensure fair competition between various input types.

User experience. We had dyads of players (one able-bodied person, one
person using a wheelchair) play the game in conjunction with the Canadian
Paraplegic Association’s wheelchair relay, an annual family sports event.
Participants provided feedback on the game and their player experience.
Our fi ndings showed that players using wheelchair input showed
heightened satisfaction of needs (e.g., competence, autonomy, and
relatedness) compared with a neutral response; satisfaction of needs during
play ultimately predicts a player’s motivation and is indicative of a positive
user experience. Players rated their enjoyment of our game signifi cantly
higher than a neutral response, and their comments demonstrated that they
enjoyed how the game integrated the wheelchair (e.g., “It is nice to see
my wheelchair in the game instead of being an object that stands between

310

me and the world”). Although our balancing mechanisms helped equalize
the playing fi eld between the different types of input, able-bodied players
still outscored their opponents using wheelchairs, suggesting that better
balancing approaches need to be investigated and implemented.

Our work on Wheelchair Revolution demonstrates how the wheelchair can
be integrated into a game as an input device. This game was targeted at
younger adults; however, we were curious to see whether motion-based
play could also provide physical stimulation for older adults experiencing
age-related changes. We conducted several studies, exploring the space of
motion-based game design for the elderly.

Hunting, Cooking, and Candy. Our work on motion-based game design for
the elderly has investigated various input controls (Gerling, 2013), including
wheelchair-based control, and the use of motion-based games to foster
relationships with caregivers (Gerling, 2014a). These research projects led
to the design of a suite of motion-based games for use by the elderly, which
we deployed in a long-term evaluation with seniors who lived in a care
home (long-term care) and in a senior residence (assisted living) (Gerling,
2015).

Gameplay. In Candy Kids, candy moved across the screen and could be fed
to a child by moving the player avatar (represented by a virtual hand) over
the scrolling candy. Prairie Hunter invited players to hunt virtual animals
by moving crosshairs over the animal using the motion of their hand. In
Cooking Challenge, players prepared a salad by chopping, arranging, and
mixing ingredients. Harvest Time invited players to cut down apples from a
tree and hand the apple to a girl (Figure 3).

Figure 3. Screenshots of the four games designed for older adults (clockwise from
top left): Harvest Time, Prairie Hunter, Cooking Challenge, and Candy Kids.

311

Game input. Both Candy Kids and Prairie Hunter used pointing input,
where the player’s hand was tracked using Microsoft Kinect to control an
avatar within the game. Cooking Challenge and Harvest Time implemented
gesture-based input that mimicked the real-world actions associated
with the content of the games. Players used their strong hand to perform
gestures and pointing actions. All games could be played in single-player
or multiplayer mode.

User experience. A four-month deployment of the games in the two care
facilities provided insights into the use of the games by the residents. Focusing
on qualitative analysis of interview and observational data, we found that
playing video games in the context of a weekly activity is enjoyable and
empowering for independent older adults in a senior residence, but difficult
when people experience complex age-related changes and impairments—
as in the care home, for example—if these changes influence how older
adults view the social context of play and how much assistance they require.

Reflections on Energame Design: Summary
We have presented three examples of how energames designed according
to a set of guidelines can motivate movement through playful interaction
design. Our games were designed for three specific populations who are
vulnerable to long periods of sedentary behavior. GrabApple was deployed
in schools to break up long periods of sitting. In addition to raising heart rate
and being an enjoyable experience, it also met the guidelines for energame
design. The simple-to-learn game mechanics offered an easy entry into play,
the in-game challenges were achievable in a short time, players received
immediate feedback related to their exerted effort, the game difficulty
adjusted to the player’s skill through increasing challenge, and we provided
a class-based aggregate leaderboard to provide motivation through social
play without identifying individual players.

Wheelchair Revolution was designed to provide wheelchair-accessible
motion-based play. By integrating the wheelchair as an input device, we
gave players a way to break up sedentary periods of the day, and use the
wheelchair as a tool to interact with a game while promoting movement.
The guidelines for energame design guided development: The game
provides easy entry into play by using accessible mechanics and controls; it
provides short-term challenges to build self-efficacy; it provides users with
feedback about how well they performed—which is directly tied to their
physical effort; it balances play for players with different abilities and skills;
and it allows players with different physical abilities to directly compete,
offering a social play experience with other people who use wheelchairs or
able-bodied players.

Finally, our suite of games for institutionalized older adults was created
using the guidelines for energame design in combination with design
recommendations for games for older adults. As such, we focused on
energame design within the context of accessibility of games for older

312

adults experiencing age-related changes and impairments. Our results
show that the nature of energames (easy entry into play, combination of
short- and long-term challenges, playability in a social setting) makes them
particularly suited for deployment in care-home settings, where sessions
of play often need to fit in with other scheduled activities, but that their
successful integration and older adults’ engagement with them ultimately
depends on their individual abilities and interests. However, if older adults
do take ownership of energame play, our findings demonstrate that such
games can be a valuable opportunity to provide mental and physical
stimulation to combat sedentary behavior in late life, encouraging older
adults to reintroduce challenge and competition into their leisure activities.

Our results suggest that energames can promote movement among very
different populations— from schoolchildren to older adults living in care
homes. Motivating physical activity in short bursts throughout the day can
help to break up long periods of sedentary behavior; interactive play is a fun
way of achieving this goal.

313

OrMiS: Use of a Digital Surface for Simulation-Based
Training

Christophe Bortolaso, T.C. Nicholas Graham, Stacey
D. Scott, Matthew Oskamp, Doug Brown, and Liam
Porter

(More details on OrMiS and its application can be found in our published papers.
These include an overview of OrMiS and its design goals (Bortolaso et al., 2013). We
have studied in detail the tradeoffs between lenses, radar views and tabletop-level
zoom (Bortolaso et al., 2014). Finally, we have shown how a multi-surface map table
can support a variety of terrain visualization techniques (Oskamp et al., 2015).)

Introduction
The Canadian Army uses simulations to train officers in executing effective
Command and Control (C2) at the formation headquarters and unit
command post levels. In these exercises, the primary training audience (PTA)
is composed of officers practicing tactical decision-making in a simulated
command headquarters. Retired military officers (called interactors) act
out the role of troops on the battlefield. Trainees operate in a mocked
up command headquarters – a room with tables, maps, computers and
communications equipment. Trainees use radio and chat programs to
communicate with officers in the field, use battle management software
to plan missions and operations and to maintain situation awareness,
and use unmanned aerial vehicles (drones) to monitor the operation. In
simulations there of course are no troops and vehicles in the field. Instead,
the interactors use simulation software to carry out the orders they receive,
for example using point and click mouse-based computer interactions to
specify the routes that vehicles take as part of a convoy.

Simulation-supported exercises provide numerous advantages over
exercises carried out in the field. Simulations are much cheaper than field
deployments, enabling large-scale exercises at low cost. They enable
actions, which would be cost prohibitive or dangerous in real-world training,
such as blowing-up buildings. Simulation-based training therefore allows
officers to be trained more frequently, at a lower cost, and in some ways
more realistically. However, the quality of the training experience depends

314

on the ability of interactors to enact a realistic and educationally benefi cial
scenario. Modern simulation tools provide deep and rich functionality, but
at the cost of complex user interfaces that interactors often fi nd diffi cult to
learn and to use.

As an alternative to current simulation tools, we developed OrMiS, a
system for Orchestrating Military Simulation (fi gure 1). OrMiS provides
users with a multi-display and multi-touch simulation interface based on a
digital tabletop. OrMiS follows the conventions of traditional map tables
where a small group of people can work together to observe the state of a
battlefi eld. Unlike traditional map tables, OrMiS can also be used to control
a simulation, allowing users to plot routes and positions for vehicles. OrMiS
provides a touch interface, where dragging out a route with a fi nger moves
units, and where the map can be panned and zoomed with pinch gestures.
Lenses can be used for focused work; separate tablets can be used for
private work, and radar views provide group context.

Figure 1. OrMiS supports military simulation by allowing small groups of people to
collaborate around a shared touch surface. OrMiS is based on a large multi-touch

table, handheld tablets, and a radar view display.

In this chapter, we report our experience analyzing interactors’ practices and
show how this informed the design of OrMiS. Through fi eld observations
and interviews with staff from the Command and Staff Training and
Capability Development Center (CSTCDC), we identifi ed that the quality
of the exercises is constrained by a mismatch between existing simulation
interfaces and interactors’ expertise, collaborative practices, and workfl ow.
Existing simulation tools are complex and diffi cult to learn. Days of training
are required prior to each exercise to make interactors productive. Currently,
interactors sit in front of a PC, making it diffi cult for them to coordinate their
actions. In order to collaborate, interactors are forced to switch between
their screen and a physical map when impromptu events occur during an
exercise.

315

In this chapter, we present the design of OrMiS and show how it’s large
table-based form factor and touch interface address these problems of
ease of learning, coordination and support for planning. We first provide
background in tabletop interaction in general and survey earlier efforts to
use digital tabletop interfaces for planning and command and control. We
then show how OrMiS was designed to be easy to learn, while helping with
coordination and planning tasks. Finally, we report on enthusiastic feedback
from the use of OrMiS by officer candidates.

Background
Large tabletops naturally support collaborative work by enabling face-
to-face communication, pointing and gestures, and seamless awareness
of others’ activities (Gutwin & Greenberg, 2002). These properties have
led researchers to explore the benefits of digital tabletops for computer
supported collaborative work in collocated situations. Decisions around
how to position and orient the content displayed on a tabletop (Kruger,
Carpendale, Scott, & Greenberg, 2004) are key to achieving fluid interaction
and smooth collaboration. For example, objects oriented toward and close
to an individual are understood by others as belonging to that person,
whereas objects located in the middle of the table are often shared by the
group (Scott, Sheelagh, & Inkpen, 2004). Similarly, an object intentionally
occluded at the bottom of a pile is typically considered no longer relevant
for the ongoing task, or stored for later use. Techniques have been proposed
to move and rotate objects with only one finger (Hancock, Carpendale,
Vernier, & Wigdor, 2006) and to manage occlusion between physical items
resting on tabletop displays and virtual objects (Javed, Kim, Ghani, &
Elmqvist, 2011; Khalilbeigi et al., 2013).

Co-located collaboration around a tabletop also introduces problems of
physically reaching parts of the table, leading to physical interferences (one
person’s arm getting in the way of another’s). Doucette et al. have shown
that people working around a table try to avoid physical touching as much
as possible. This can lead them to fall back to turn-taking (Doucette, Gutwin,
Mandryk, Nacenta, & Sharma, 2013), losing a primary benefit of a shared
surface that it allows people to work at the same time. Similarly, conflicts
can occur when two people try to simultaneously access the same elements.
For example, if two people try to pinch-to-zoom a map on a digital surface
at the same time, the result can be unpredictable and confusing. Previous
research shows that relying solely on social protocols to prevent or resolve
such conflicts is frequently insufficient (Morris, Ryall, Shen, Forlines, &
Vernier, 2004). Tabletop interfaces should therefore provide support to limit
both physical and interaction conflicts.

Finally, when collaborating, people frequently switch between working
together and working separately. For example, when planning routes in
a C2 tool, planners may focus separately on the units for which they are
responsible, then discuss global goals, then return to individual planning.
This type of collaboration is called mixed-focus collaboration (Gutwin &

316

Greenberg, 1998), and applies to activities such as brainstorming (Geyer,
Pfeil, Höchtl, Budzinski, & Reiterer, 2011), route-planning (Tang, Tory,
Po, Neumann, & Carpendale, 2006) and information analysis (Isenberg,
Tang, & Carpendale, 2008). The challenge in the design of a tabletop
tool to support this kind of work is to support both styles of work, and
to provide seamless transitions between them so that people do not lose
context or have difficulty returning to their focused work after collaborative
discussions. Many interaction techniques such as personal viewports (Ion
et al., 2013; Scott et al., 2010), lenses (Forlines & Shen, 2005; Tang et al.,
2006) or sharable containers (Hinrichs, Carpendale, & Scott, 2005) have
been designed and tested to support different levels of collaboration.

Tabletop Interfaces for Geospatial Content
For centuries, people have used tabletops to collaboratively work with maps.
With the widespread availability of Geographical Information Systems (GIS),
digital tabletops have become a compelling medium for collaboratively
interacting with maps. Digital maps support zooming and panning and
dynamic update of the map’s contents.

The first map-based tabletop systems provided simple interfaces, relying
on social protocols and on the intrinsic properties of tabletops to ease
collaboration and workspace sharing. For example, LIFE-SAVER (Nóbrega,
Sabino, Rodrigues, & Correia, 2008) was designed to support flood disaster
response operations. This system first displayed a 3D rendered map on
an interactive table to allow experts to analyze flooding simulations in a
collocated manner. Similarly, MUTI (Nayak, Zlatanova, Hofstra, Scholten, &
Scotta, 2008) supports decision-making in disaster management through a
zoomable digital map and a set of oriented controls. In these pioneering
systems, little attention was paid to how best to support collaborative work.

When several users have to interact on the same space, an obvious solution
is to provide personal viewports on the map, windows that allow each
person to have and manipulate their own view. This avoids the possibility of
physical awkwardness as people try to touch the same part of the map or
need to reach around each other, and allows all users to zoom and pan their
personal view as they choose. For example, uEmergency (Qin, Liu, Wu, &
Shi, 2012) supports forest fire responders by proving real time geolocated
information on a large tabletop. To support mixed focus collaborative tasks,
uEmergency displays a shared interactive map as well as individual windows
and widgets for each user. The same approach is also used in eGrid (Selim
& Maurer, 2010), which provides multiple rotating views of the same map
to support the analysis of a city‘s electrical grid. This approach of splitting
the same map into multiple views on a tabletop display efficiently supports
individual work while maintaining workspace awareness. However, much of
the advantage of tabletops is lost, since people are no longer looking at the
same shared display, and possibly lose awareness of what others are doing.
This approach is therefore not suitable for tightly-coupled collaboration
where users are attempting to discuss and manipulate a single part of the

317

map (Tang et al., 2006).

Finally, another emerging approach is to provide each user with a personal
hand-held device (such as a tablet) showing a personal view of the map. This
is another form of personal viewport, but where the private map appears
on a separate physical device, not on the table. For example the Tangible
Disaster Simulation System (Kobayashi et al., 2006) divides the output
space by combining a tabletop display with two external screens showing a
3D first-person perspective of the map and charts describing the underlying
disaster simulation. A more recent approach consists of physically splitting
the input space by providing tablets to the users around a tabletop display.
For example, the SkyHunter project (Seyed, Costa Sousa, Maurer, & Tang,
2013) enables geological exploration by providing a tabletop and multiple
tablets to a group of users. Predefined gestures allow users to transfer part
of the map from the table to a tablet and back, thus enabling individual
and group work and transitions between them. Recent controlled studies
showed that this combination of table and tablets is beneficial for teamwork
(Wallace, Scott, & MacGregor, 2013) which makes this approach very
promising.

Tabletop Interfaces in Military Training and Operations
Despite the fact that the military has a rich history working with tables,
few research projects have focused on using digital tabletops to support
command and control activities. The Digital Sand Table that face-to-face
work around a digital command and control application could strongly
support collaboration. Similarly, the Comet project (Cerdec Comet
Multitouch, http://www.cerdec.army.mil/about/comet.asp)—a collaborative
project between the US Army’s Communications-Electronics Research,
Development and Engineering Center (CERDEC) and Microsoft showcased
at the 2010 Army Science Conference—proposed a digital tabletop interface
to enable collaborative access and manipulation of maps and videos to
support command and control. Canadian naval simulation researchers at
Defense Research and Development Canada (DRDC)-Atlantic in conjunction
with SurfNet researchers proposed the ASPECTS system (Scott et al., 2010),
which provided a digital tabletop system to support naval command and
control by providing real-time monitoring of ships’ locations. ASPECTS
used personal viewports on the tabletop, and provided pie-menus and role-
based interaction based on user identification with pens.

Companies specializing in defence and security have explored digital
implementations of the traditional map table. In 2007, Northrop Grumman
demonstrated TouchTable , an 84” digital tabletop supporting collaborative
interaction with geospatial data. The FAA’s Cyber Security Incident Response
Center installed a TouchTable (Northrop Grumman’s War table: http://news.
cnet.com/8301-17938_105-9773294-1.html) to help cyber analysts identify
and respond to cyber-attacks against the FAA’s network (http://www.
irconnect.com/noc/press/pages/news_releases.html?d=125335). Around
the same time, Northrop Grumman also demonstrated a 3-dimensional

318

digital map tabletop, called the TerrainTable (Northrop Grumman’s
TerrainTable: http://blogs.walkerart.org/newmedia/2006/05/16/art-com-
northrop-grumman-and-audiopad/). Activating mechanical pins in the table
to distort a silicone skin physically formed the shape of the terrain. As the
terrain was formed, satellite pictures of the map were displayed through
an overhead projector. This early work, along with recent advances in
digital tabletop hardware platforms, however, paved the way for currently
available product offerings, for example the iCommand (iCommand: http://
www.aaicorp.com/products/unmanned/icommand) Table by AAI / Textron
Systems, which provides a multi-touch based digital tabletop interface to a
cloud services-based battlefield map data. The iCommand system offers a
distributed interface across digital tabletop and other multi-touch devices,
such as an interactive wall or smartphones, to visualize units’ position in real
time in the field or in command posts. Similarly, HDT Global (Command
Table: http://www.hdtglobal.com/products/command-control/audio-video-
display/60-interactive-command-table/) and Steatite Rugged Systems
(Rugged Interactive Mapping Table: http://www.rugged-systems.com/
products/rugged-monitors/interactive-mapping-table.html) currently offer
portable (i.e. foldable) digital tabletop systems that can be deployed in
the field to forward command posts. Both systems provide a multi-touch
interfaces to existing C2 software systems.

Despite the above research and commercial products, there are still relatively
few digital tabletop systems currently available in real-world military
training or operational contexts. This chapter contributes to this domain
by documenting the OrMiS interface, and providing lessons learned in
designing a digital tabletop interface to support military simulation-based
training exercises.

Designing for Simulation-Based Training
When conducting simulations to help train staff officers in command and
control techniques, the Canadian Command and Staff Training and Capability
Development Center (CSTCDC) relies on retired military officers (called
“interactors”) to role-play officers in the field and to enact simulated troop
actions (Roman & Brown, 2008). As shown in Figure 2, a standard approach
locates trainees in a mocked-up command headquarters, communicating
by radio or text chat with “officers in the field”. The trainees use BattleView
(BattleView: https://www.thalesgroup.com/en/content/battleview-newly-
integrated-canadian-armys-tactical-c2-system) a command and control
application on personal computers and paper maps to perform battle
management and operational planning. The positions of units in the field
are periodically updated on BattleView, whose main map view is displayed
on a wall, making it visible to all the officers in the headquarters (see Figure
2A).

The officers in the field are role-played by interactors who relay observations
to the trainees and carry out their orders. The interactors are, in fact,
located at desks with personal computers located in a private room, and

319

use simulation tools that mimic battlefi eld troop movement and combat
engagement (see Figure 2B). In the back of the interactors’ room, a set of
screens display a map showing the global state of the mission. In the middle
of the room, a large paper map of the mission’s area of interest is located
on a table (called a “bird table”, as it provides a bird’s eye view), with small
paper icons to represent the units’ positions. The interactors primarily use
this table to collaboratively plan the simulation before it begins. Because
of the diffi culty of keeping the table’s paper markers updated, the table is
rarely used after the exercise begins.

Figure 2. Physical layout of a typical simulation-based training session.

The simulation software allows interactors to mimic troop movement and
combat engagement. Two popular simulation tools are ABACUS (Advanced
Battlefi eld Computer Simulation - http://www.raytheon.com/) and JCATS
(Joint Confl ict and Tactical Simulation - http://www.jtepforguard.com/
jcats.html). Simulation tool interfaces are composed of a full-screen map
view with a large set of accompanying controls. The units are displayed
directly on the map using standard military symbols. Interface controls allow
operators to set the position, orientation, heading and rules of engagement
of units, to organize units’ hierarchy, to perform combat operations, and
to create routes. Each interactor is in charge of a set of units, typically split
according to the units’ command hierarchy.

We visited the CSTCDC three times to observe live simulation exercises.
These fi eld observations, in conjunction with supplementary interviews
with simulation experts, have revealed that the quality of the exercises is
constrained by three main issues with the current infrastructure:

1. Interface Complexity: The interfaces of existing simulation tools are
complex, requiring signifi cant training and expertise to use. A lack of
qualifi ed personnel limits the number and size of simulated exercises
that can be held.

2. Weak Support for Coordinated Tasks: Tightly coordinated actions
between interactors are poorly supported by the existing tools. This
is largely due to the physical setting, where interactors sitting at
individual PCs have diffi culty communicating with each other and
maintaining a global awareness of other interactors’ actions within the
(digital) battlefi eld.

320

3. Poor Flexibility When Plans Need to Change: If the trainees perform
unexpected actions, the interactors may need to adjust their training
strategy. Re-planning requires intensive communication and requires
reference to the state of the battlefield. The physical layout of the
current PC-based infrastructure makes re-planning difficult, requiring
interactors to leave their desks and move to the physical bird-table.
But this is hindered by the fact that the physical markers on the bird
table have become out of date with respect to the simulation. Once
the re-planning is complete and the interactors return to their PCs,
they no longer can see the new plan sketched out on the bird table,
and must enact it from memory.

To solve these issues, we implemented the Orchestrating Military Simulation
(OrMiS) system, which provides an interface for interactors based on a
multi-touch tabletop surface and supplementary displays. OrMiS provides
interactors with an efficient and easily learned way to perform simulations
while supporting collaborative manipulation of units.

OrMiS: Bringing Multi-Touch to Simulation-Based Training
OrMiS provides small groups of interactors an interface to move units
and perform combat actions while sharing a common overview of the
battlefield. OrMiS is a multi-display environment (MDE) composed of a
multi-touch table, multiple tablets to provide personal views, and additional
screens displaying an overview of the battlefield. Interactors can either
work together on the table, or separately using the tablets. The devices
are synchronized over the network, so actions performed on one device
are immediately propagated to the others. This diversity of devices offers a
range of possible configurations, detailed later in the chapter.

The Interactors’ Interface
As shown in Figure 3, OrMiS displays a topographic map from a top-down
perspective. Operators can pan the map by dragging with two fingers and
zoom the map with a pinch gesture. As with standard map applications, the
resolution of the map display automatically increases with the zoom level,
showing details that are not visible on the overview. The map can also be
zoomed using bifocal lenses and personal viewports, as described in the
following sections.

Units positioned on the map are depicted using standard military symbols.
Interactors can tap on a unit to access specific controls such as to specify
the unit’s heading, rules of engagement or speed. Visibility and attack
range are displayed by overlays on the map. A line of sight overlay is shown
when an operator selects a unit or sketches a route. Operators can change
a unit’s heading by selecting and rotating it. Combat begins when opposing
units move within range and visibility of each other, respecting the rules of
engagement for each unit type.

Routes can be created, modified, or deleted using single finger gestures,

321

as detailed below. Two types of routes are supported: permanent routes,
which are created from the map and can be used by multiple units at the
same time and in any direction, and one-time routes, which are created
from individual units and disappear when the associated unit reaches the
route endpoint. A one-time route can be connected to a permanent route
to drive units onto it.

Figure 3. The OrMiS system combines a digital tabletop, a radar view display, and
tablets for private work.

OrMiS Technical Setup
OrMiS’s interactive table is built from a PQ Labs G4S multi-touch frame and
a 55” high-defi nition television housed in a custom-built wooden frame.
The OrMiS software application was implemented in C# using the Unity
game engine (http://unity3d.com/). This engine eases 3D programming
and provides fast rendering and a very responsive interaction. OrMiS is
compatible with Windows 8 and TUIO (Tangible User Interface Objects -
http://www.tuio.org/) multi-touch inputs. The maps of OrMiS are generated
using the InterMAPhics GIS (Kongsberg Gallium, 2013). Multiple surfaces
are synchronized over a network using the Janus software toolkit (Savery &
Graham, 2012).

Over all, OrMiS provides the features required to perform a simple but
realistic exercise. With OrMiS, small groups of interactors can plan and then
direct a scenario through a simple touch-based tabletop interface. OrMiS
provides ways to work individually as well as in tight collaboration without
having to switch between workstations.

Addressing Ease of Learning
Our interviews with simulation center staff revealed a strong desire for
simulation tools that were easy for interactors to learn and use. Most
interactors are retired military offi cers who have high expertise in military
command and control, but are not experts in simulation tools such as

322

ABACUS or JCATS. Interactors typically participate in simulation supported
training exercises once or twice a year, and so need to be trained (or re-
trained) prior to each exercise.

The interactor’s interface in ABACUS or JCATS shows a map of the battlefi eld
including the units under the interactor’s control. A profusion of menus
support actions such as plotting routes, operating vehicles, fi ring weapons,
checking units’ line of sight, and fi ltering which units and terrain features are
displayed on the map. Interactors use two side-by-side computer screens,
with one screen displaying the map and the other displaying the menus
(Figure 4). Interactors need to become suffi ciently profi cient with all interface
controls in order to work in the real-time of live simulated exercises.

Figure 4. The interface of the ABACUS simulation tool displayed on two screens.

The interactor’s interface in ABACUS or JCATS shows a map of the battlefi eld
including the units under the interactor’s control. A profusion of menus
support actions such as plotting routes, operating vehicles, fi ring weapons,
checking units’ line of sight, and fi ltering which units and terrain features are
displayed on the map. Interactors use two side-by-side computer screens,
with one screen displaying the map and the other displaying the menus
(Figure 4). Interactors need to become suffi ciently profi cient with all interface
controls in order to work in the real-time of live simulated exercises.

Simple, Touch-Based Controls Improve Usability and Scalability
We designed OrMiS to be easy to use. We applied traditional user-centered
design methods, regularly evaluating the usability of our interface with
military experts. We followed a parsimonious design process, adding
features only when we could demonstrate that they were needed. This led
our fi nal design to be controllable with a small number of touch actions and
controls.

Interactors can drag, tap, or long press (i.e.. touch and hold) elements to
directly see the effects on the display. For example, a simple drag gesture
originating from a unit icon automatically creates a route for the associated
unit (see Figure 6A). Tapping on the fi rst or last waypoints can extend
a route. When a unit is driving along a route, the waypoints can still be
modifi ed. The unit will adapt in real time to new waypoint positions. This

323

allows interactors to easily specify routes, and to quickly react to situations,
such as the need to escape from an enemy.

Similarly, a unit’s line of sight can be shown by tapping on its icon, in the
form of an isovist visualization (see Figure 6B). The heading of the unit can
be modifi ed with a circular widget. To hide the line of sight and circular
control, the interactor simply taps the unit again. This visualization tool
allows interactors to easily organize formations of units to cover a specifi c
area.

Similarly, to limit the number of controls, feedback indicators are displayed
automatically only as needed. For example, a small label indicating the
terrain type (e.g., forest, road, water, land) is automatically displayed close
to an operator’s point of touch. This feature supports terrain exploration
without the need of additional controls.

Figure 5. A) Routes in OrMiS are specifi ed using a simple dragging gesture;
B) Three units’ isovist viewsheds.

In contrast to the existing simulation interfaces, all of OrMiS’ controls
(described above) have the advantage of being located directly in the
context of the elements with which they are associated (e.g. unit, map,
route) rather than on separate interface elements or in external windows. To
interact with the system, interactors do not need to switch between controls
and the map, but can directly apply their actions to the units themselves.
As we describe below, both simulation experts and offi cer trainees have
reported that the OrMiS interface can be learned in minutes. This is in sharp
contrast to the equivalent features in the ABACUS and JCATS simulation
tools, which require days of training before each exercise.

Supporting Coordinated Tasks & Awareness
The current physical setting of the simulation room and the existing PC-based
simulation tools hinder both explicit and consequential communication.
Explicit communication involves planned, intentional behavior, such as
verbal expression, or non-verbal actions such as pointing or gesturing
(Baker, Greenberg, & Gutwin, 2001). For example, an interactor who calls
across the room to initiate an attack is using explicit communication.

324

Consequential communication occurs when a person does not necessarily
intend to communicate with another person, but nonetheless conveys
information to an observer. For example, an interactor positioning his/
her units in a specific formation may communicate the intent to attack to
someone watching his/her actions. Consequential communication between
interactors relies on their common understanding of military tactics and
procedures, and on their ability to observe each other’s actions.

OrMiS provides a shared physical and virtual workspace for interactors to
perform their actions, and thus supporting both explicit and consequential
communication.

PC-based Setting and Communication Issues
Existing simulation tools poorly support both explicit and consequential
communication. Interactors sit at their own desks, using a PC, possibly
distant from other interactors with whom they are coordinating activities.
This physical arrangement limits opportunities for explicit communication
between interactors during an ongoing exercise. We have observed that
rather than talking directly, interactors call to each other across the room.
This does not work for extended or complicated conversations. When
calling across the room, interactors cannot reference shared materials,
such as pointing at a map. Instead, they need to turn or stand up and
walk to another interactor’s workstation. In practice, they are rarely willing
to do so, and the quality of coordination suffers. The current physical
arrangement makes it difficult to coordinate complex scenarios that involve
dependencies between units being controlled by different interactors. For
example, interactors using existing simulation tools find it challenging to
move infantry units along a road while flanking a tank. This scenario requires
the two interactors controlling the infantry and the amour units to look at
each other’s screens or to verbally communicate across the simulation room
while performing their actions.

These scenarios are so difficult to perform with existing tools that in
practice, the interactors typically change ownership of units so that the
tightly coordinated units are under the control of only one person. This
requires a high level of expertise with the simulation interface. As we will
see, OrMiS improves explicit communication between interactors to directly
enable high degrees of coordination, allowing such complex scenarios to
be carried out without the need for interactors to change location, to call
across the room, or to modify the order of battle.

The current physical setting and existing simulation tools also limit
consequential communication between interactors. With JCATS and
ABACUS, interactors share the state of the battlefield on their screens, and
thus, theoretically can observe the actions of other interactors within the
battlefield context. In practice, however, interactors typically filter out other
interactors’ units and zoom and pan to different parts of the map, as their
current task requires. This means that other interactors’ actions may not

325

be observable and interactors may not be aware of important movements
executed by their colleagues. To help with global awareness, a large
monitor in the back of the room displays a map of the complete battlefield
(see Figure 2). However, interactors rarely look at this screen, since they
are typically focused on their own PCs. When interactors are working on
separate parts of the map, consequential communication is insufficient to
maintain awareness of other interactors’ actions.

OrMiS Supports Communication with Space-sharing Techniques
OrMiS supports both explicit and consequential communication by allowing
small groups of interactors to work together around a digital tabletop. The
tabletop interface naturally improves awareness by providing a shared
physical and virtual workspace and enabling face-to-face communication.
Consequential communication is supported through peripheral vision
around a shared tabletop and explicit communication is facilitated by the
physical configuration of the group around a shared workspace.

However, relying solely on a shared tabletop is not sufficient to support
activities where interactors need to view different parts of the map at
different levels of detail. For example, two interactors may plan routes for
different units on different parts of the map, both requiring a detailed view of
their part of the map; this would be a form of loosely coupled coordination,
as they are working to the same global objective, but at the moment
are working separately. This first scenario requires little (if any) explicit
communication, but consequential communication may be important to
retain general awareness of the locations of the other interactors units.

Conversely, two interactors coordinating the passage of units through the
lines need to see the same part of the map in detail, each controlling the
units for which they are responsible. This latter scenario is an example of
tightly-coupled coordination, where the interactors are working closely
together and attending carefully to the other interactor’s actions. In this
scenario, both explicit and consequential communication is important.

To assist with the requirement to support both loosely and tightly-coupled
collaboration and both consequential and explicit communication, we
implemented in OrMiS a set of interaction techniques, each adapted to
different situations:

1. The main map (Figure 6A) provides a shared space for interactors. The map
can be zoomed using a standard pinch gesture. The main map is suitable,
for example, for tasks where several interactors need to move units in a
coordinated manner, or for the passing through the lines scenario described
above. The main map supports explicit communication by providing
interactors with a shared space that they can point to in discussions. It also
supports consequential communication through the fact that it is visible to
all interactors, providing ongoing awareness of the state of the simulation.

326

2. Bifocal Lenses (Figure 6B) provide a circular area that can be zoomed
independently of the map itself. As the name implies, a bifocal lens
magnifi es the part of the map over which it is placed. The position of the lens
shows others what part of the map is being used, fostering consequential
communication. Lenses are particularly useful when two interactors need to
maintain awareness while working with detailed views of different parts of
the map, as with the scenario of two interactors planning routes for units in
different parts of the map.

3. Personal viewports (Figure 6C) provide a rectangular area that can be
panned and zoomed independently of the main map. Unlike bifocal lenses,
personal viewports do not magnify the part of the main map where they
are located, but are independent of the main map. Therefore, viewports
provide support for explicit communication by enabling face-to-face
communication. However, since they are decoupled from the main map, it
can be diffi cult for a person to determine what part of the map someone
else’s viewport is showing, limiting consequential communication.

4. Tablets (Figure 6D) provide viewports on the shared map that are
displayed on a separate hand-held device. Tablets allow people to work
independently around the digital tabletop. Actions performed on a tablet
(e.g., moving a unit) are directly propagated through the network to the
other displays. Tablets are similar to personal viewports, but provide a
higher degree of privacy, and do not take away screen real estate from the
main map. Tablets provide poor awareness of others’ actions, since it may
not be easy to see what other people are working on. Tablets are best for
individual work requiring a low level of awareness. Therefore, tablets are
similar to personal computers in their support of explicit and consequential
communication but are particularly useful for individual actions.

Figure 6. OrMiS in three different settings:
A) Only the main map is shown, ideal for planning,

B) Interactors with bifocal lenses working on close parts of the map,
C) Interactors with personal viewports working on separated parts of the maps,

D) Interactors with individual tablets around the table.

327

In addition to these techniques, OrMiS also provides a general overview
of the battlefield on a separate screen. This radar view (see Figure 3) is
synchronized over the network so that changes performed on the table or
on the tablets are shown immediately. The radar view displays the entire
battlefield at all times, providing general awareness information even when
the main map is zoomed. The radar view shows the position and area
shown by the main map, lenses, personal viewports and tablets within the
battlefield. Similarly to the large monitor in the setup currently used by the
CSTCDC (Figure 2), this view provides general awareness for interactors
throughout the simulated exercise.

These four space sharing techniques and the radar view support a
continuum of collaboration scenarios, from the main map for tightly
coordinated actions to individual work on tablets around the tabletop. In
addition, the use of each technique conveys different information about
interactors’ work and position on the map. With OrMiS, interactors can
choose whichever interaction technique best suits the current collaborative
scenario, and as a result provides the level of support for consequential and
explicit communication required by the given situation. In the next section,
we address the third and final issue identified in the existing simulation
environment: flexibility to plan ad-hoc or impromptu changes.

Flexibly Supporting Changes in Plans
A typical military training exercise is organized around four major steps:
planning, battle management, battle updates and after-action review. First,
interactors plan their movement based on trainees’ orders. This usually
includes war-gaming on a large map table as depicted in Figure 2. Then,
interactors execute the plan using the simulation tool on their PCs. During
the plan’s execution phase, interactors regularly provide updates to the
trainees. When the exercise is finished, interactors and the trainees gather
and perform an after-action review to confirm how training objectives were
met and to discuss lessons learned. In practice, unforeseen events occur,
forcing the trainees and interactors to reconsider their plans.

Re-planning and Workflow
During simulations, unexpected events may arise. For example, the
officer trainees might change their plan after receiving updates from the
interactors and provide truly unexpected orders. Reasons for such changes
are various and related to the strategy adopted by the trained officers in
the headquarters. We observed that the interactors’ reaction to unforeseen
events depends on the impact of the event on the original plan. If the event
requires minor re-planning, the lead interactor verbally communicates
the changes to other interactors. Because interactors are retired officers
with significant experience in command and control, this type of minor re-
planning is usually performed without problem. On the other hand, if major
re-planning is needed, interactors usually gather around the bird table
to re-plan. Because the paper map on the bird table is not automatically
updated, interactors have to manually position the units on the table before

328

proceeding to the planning phase. Meanwhile, one interactor is left in charge
of monitoring all the units while the others are re-planning. Therefore, only
automated movements (e.g. moving along a defined road or performing
a pre-programmed patrol) can be performed, potentially impacting the
realism of the simulation. For example, units’ reactions to an attack may be
delayed or orders sent by the PTA can be missed.

A Diversity of Co-located Setups
As described in the previous section, OrMiS provides a set of interaction
techniques to support both individual and collaborative work on and around
the digital tabletop. These techniques enable interactors to work together
on the table at different levels of coordination or to work independently on
tablets. For example, in the early phase of the exercise, the main map on
the tabletop provides a shared space to a small group of people, enabling
those people to communicate face-to-face, using speech, pointing and
gestures. During battle management, the lenses, personal viewports and
tablets allow interactors to work in different ways depending on the level
of coordination and awareness required. For example, two interactors can
work closely using the tabletop while the others perform independent work
on their tablets.

Because these techniques are located directly on or around the interactive
tabletop, the effort for transitioning between them is low. When performing
the exercise, if unexpected events occur, interactors can immediately switch
to a re-planning phase by looking at the tabletop display in front of them.
During re-planning, interactors can place their tablets on the table’s edge
to ease collaborative work over the table itself (see Figure 3 and Figure
7D). During collaborative planning, interactors can monitor their own units
directly on their tablets, through a personal viewport or by looking at
the radar view. For example, if an unexpected attack happens, the event
appears directly on the tabletop display and on the radar view. Concerned
interactors can then immediately respond without interrupting the planning
phase. Finally, the repositioning of the units on the table is avoided since
the state of the battlefield is automatically updated by the system. Once
the plan has been changed, the transition to battle management can be
achieved in the same way. Thus, OrMiS’ physical organization around a table
and tablets ease transitions between different work styles and activities.

User Feedback about OrMiS
When designing OrMiS, we solicited regular feedback from military officers
and simulation experts to understand the required features and to get
feedback on OrMiS’ interface. We also assessed the usability of OrMiS with
a group of officer candidates. We now report on their feedback.

We invited six pairs of officer candidates from a nearby military university
to perform a simple but realistic scenario with OrMiS. There were 12 male
participants, between the ages of 18 and 30 years old. All participants
held the Basic Military Officer Qualification–Land (BMOQ-Land), requiring

329

knowledge of the topographical standards used in military maps, as well
as basic troop deployment strategies. Each pair was asked to perform
the scenario illustrated in Figure 7. The scenario was introduced to the
participants as follows:

“Infantry units (1B, located to the west) and armour units (1A, located
to the east) have been operating separately. The commander has
ordered a new mission involving a platoon of infantry and armour
elements. Your task is to move the infantry and armour to the
rendezvous point (2) and then proceed towards the objective (3).
There is a high risk of enemies located in the wooded area fl anking
the main road. Send your armour with infantry escorts to sweep the
forest in order to avoid ambush.”

This scenario was designed in collaboration with senior military offi cers. In
the scenario depicted in Figure 7, one participant controls the armoured
units located at 1A, and the other controls the infantry units located at 1B.
Their fi rst task was to rendezvous at position 2. They were then to move
through hostile territory to the objective position 3, with the infantry fl anking
the armour in order to fl ush out enemies located in the woods.

Participants were fi rst trained in the OrMiS system, and allowed as much time
as they wished to become familiar with the application and the interaction
techniques. The version of OrMiS presented to participants was limited
to the use of the main map, bifocal lenses and radar view; the personal
viewports and tablets were not available. Training time typically lasted 15
minutes. Participants had no time limit and on average spent 9 minutes to
complete the scenario (M=9:12, SD=2:00). After completed the exercise,
participants were asked to complete a usability questionnaire based on the
System Usability Scale standard (Brooke, 1996) including questions related
to the main features, the lenses, main map and radar view. Participants were
then interviewed.

Figure 7. Collaborative scenario used during the study.

330

Results
All participants completed the task without encountering significant usability
issues. In interviews, participants were positive, reporting that they found
the interface easy to use and appreciated using the table to collaborate and
to enact their plans. One participant stated: “I really liked the table, it was
very intuitive”. Participants also liked the labels indicating the terrain type.
One participant said: “when we clicked it would tell us if it was water, road,
etc. and that was really handy. I liked that.” Similarly, when asked about the
usefulness of OrMiS, one participant said “…for planning the route, I found
it was actually pretty good!”. These results indicate that operators enjoyed
the OrMiS’s interface when performing the scenario.

In terms of collaboration, participants successfully took advantage of the
different interaction techniques to split their work. All the groups used
lenses for the first part of the scenario (from 1A/1B to the rendezvous at
2 in Figure 8) where no specific coordination was required. Participants
expressed strong positive feelings about the lenses because they allowed
users to work simultaneously without disturbing each other. The majority
of the groups switched to the main map in the second part of the scenario
(from 2 to 3 on Figure 8) where units had to be tightly coordinated. Prior
to switching to the main zoom, most users quickly discussed which way to
proceed to coordinate their units. As expected, the tabletop setting eased
face-to-face communication. Participants also noticed the limitation of
both interaction techniques. Several participants experienced overlapping
problems between the lenses when working physically closely on the table:
“when we are close, the lenses stack together even if there is a lot of terrain
between the two lenses”. This shows the importance of providing the
zooming feature in the main map so that collaboration is possible around
closely located points.

The scores obtained with the SUS questionnaires confirmed this feedback
and revealed interesting differences between the features. Lenses and main
map respectively obtained an average SUS score of 65.4% (SD=3.2) and
67.5% (SD=5.1) indicating a high level of usability for both techniques.
However, the radar view was perceived as less usable, obtaining only a 19%
(SD=3.58) usability score. During the interviews, participants reported that
they did not use the radar view much. We believe that since there were only
two participants and four units, participants did not require the radar view
to maintain a global view of the battlefield.

Over all, these results confirm that OrMiS enables a pair of people to perform
a simple but realistic scenario with minimal training, allowing the pair to
complete their task, and communicate in both explicit and consequential
forms. This is in a sharp contrast to the current setting using simulation tools
like ABACUS or JCATS, which require days of training and significant effort
to maintain awareness and perform tightly coupled movements.

331

Lessons Learned
In addition to these results, the participants provided us with insightful
feedback helpful to the design of multi-touch systems supporting simulation-
based training. Two participants reported ergonomic and orientation issues:
“The table should be higher or angled … there is clearly one side that’s
better”. One participant complained about pain in his neck at the end
of the study, indicating the importance of making the height of the table
comfortable for extended touch interaction. As participants were working
face to face, one member of each pair saw the map upside-down, and had to
make an additional cognitive step to correctly interpret cardinal references.
We believe that the introduction of tablets and personal viewports that can
be oriented will solve this problem.

Participants reported that they had to verbally communicate to avoid
conflicts when working together on the main map: “[We] had to create a
seniority of who was allowed and who was in control of the board, because
at some points I would go touch something and it would screw him up,
… so we had to have one person who would say don’t touch it until I’m
done”. This result is in line with previous findings in digital tabletop research
showing the importance of social protocol when working on shared spaces.
Simple interaction techniques like using two fingers for panning (instead of
the more traditional one-finger panning) can reduce unintentional actions
and consequently conflicts.

Conclusions
In this paper we first provided an overview of the state of the art in tabletop
research for collaborative work and more specifically for map-based
applications. Through this literature review, we illustrated that collaboration
around tabletop requires specific support to the various collaborative work
styles.

We presented OrMiS, a multi-display environment dedicated to military
simulation based-training. OrMiS combines the best of existing space-
sharing techniques dedicated to interactive surfaces. The OrMiS system
provides a simple interface combining zoom, lenses, personal viewports,
tablets and radar views to provide maximum flexibility during the exercises.
We showed how features of OrMiS solve important usability, coordination
and communication issues encountered by interactors during simulations.
To assess the usability of OrMiS, we reported on feedback from officer
candidates at a military university. Our results show that users are able to
perform a simple but realistic scenario with minimal training with OrMiS,
and they overwhelmingly enjoyed using the tool. We also highlighted some
interesting limitations of OrMiS such as orientation issues of the map or the
usefulness of the radar view when few units have to be monitored.

332

TableNOC: Touch-Enabled Geo-Temporal Visualization
forNetwork Operations Centers

Pierre Bastianelli, Theodore D. Hellmann,
and Frank Maurer

Introduction
Many modern telephony networks are spread across very wide areas, routing
different kinds of information via different data pipelines. Because so many
systems depend on these networks, problems can be extremely expensive.
Considering this, it is critical for network operations center (NOC) staff
to understand the state of a network quickly and easily. However, large,
distributed networks can be quite complex.

In order to understand the state of a network, NOC operators poll various
information about the system – such as server load statistics, memory
usage levels, and log files. This information tends to be conveyed through
existing tools as static charts or text. While this information is useful for
debugging serious errors in detail or understanding network performance
in retrospect, it is difficult to interact with or use for understanding the state
of the network in real time. Additionally, it is even more difficult to use for
proactively addressing issues that may become serious in the future, and
does not easily convey the distributed nature of the network.

Figure 1. TableNOC running on a SMART board and Evoluce One digital table.

333

This paper describes TableNOC, how it was implemented and evaluated
within the business context of Ivrnet, a small telephony-service provider
in Calgary, Canada. TableNOC is a touch-enabled tool for visualizing and
exploring information about the status of a telephony network in a way that
reflects this information’s temporal, spatial nature.

TableNOC presents visualizations of large amounts of call-related data
and allows users to browse through the data as a time series to observe
the evolution of a situation. Further, TableNOC includes visualizations that
update in real-time in order to reduce the latency between the moment a
problem occurs, and when it is detected by an operator.

The pilot study that we ran validates how well the tool addresses issues
encountered by various roles at Ivrnet. We present the different use cases
we envision TableNOC being used for and the results of a design critique
conducted with potential users. We found that the users were enthusiastic
about the possibility of using such a tool, and that the integration of
interactive surfaces added capacity to its data exploration abilities and
collaboration capabilities.

TableNOC’s core capabilities include geospatial visualization of real-time
and historical network data, data aggregation for different time intervals,
custom visualization builder and touch-enabled visualization exploration.

Context
The NOC is the core of a telecommunication company. It is the link between
the physical entities: servers, routers, phones, phone lines, SIP-lines and
other Voice over IP equipment, Primary Rate Interfaces. All of these
hardware pieces are linked together across vast geographic areas, while the
information carried by the network is consumed by end users, data centers,
or call centers. The role of the NOC and its operators is to monitor the status
of all the equipment on the network and the data that is going across it.
Equipment not owned by the service provider but that is connected to the
internal network has to be monitored as well, in order to ensure that all the
services and applications – including telephony, conferencing, Interactive
Voice Responders (IVRs), texting, automated phone calls, and various web
services and applications – have as little downtime as possible.

The network and services that rely upon it generate an incredibly large
amount of data. The challenge for NOC staff is to be able to make sense of
all of this data, including network load, software errors, hardware failures,
specific configurations and re-configurations, etc. Further, this data is often
displayed as text (log files or databases) in the worst case, or charts in the
best case. Neither of these forms really conveys the essentially geographic
nature of the data they represent. The operators have to rely on their
experience to use this data to understand the state of the network.

With no global overview of the situation, it is close to impossible to

334

recognize emergencies or recurrent patterns that would allow a much
quicker identification of the problem or better long-term planning. There
are many limitations that make it difficult to comprehend and even more
difficult to predict in this scenario.

At the same time, in spite of the high quantity of information available,
little is being presented in real time in a comprehensible form in the NOC.
The collection and consolidation of the data has to be done on a personal
computer and then shared via the traditional information channels and is
not readily available for collaborative work. Therefore, there is a clear need
for a collaborative environment where:

• The NOC operators can discuss and view the same data at the same
time

• The data is presented as a set of comprehensible, interactive
visualizations

In this way, we envision operators can either work on concurrent issues
impacting different areas of the system and visualize the impact of their
actions across the whole network; or, work together on the same issue,
while discussing and interacting on the same data.

As tabletops and multi-touch environments have been shown to enhance
collaboration (Scott, Grant, & Mandryk, 2003), their use with TableNOC makes
perfect sense, in addition to the fact that surface and touch environments
are very well adapted to the world of GIS (geographic information systems).
As the usage context differs, we made TableNOC platform-independent
in order to have it running and tested on various types of surfaces: tablets,
tabletops, interactive walls, etc. Therefore, client-side web technologies
such as JavaScript and Ajax were chosen for its development.

Finally, TableNOC was developed using user-centered design (UCD)
methods, with an iterative process, along with an agile development
cycle. This way, the industry related concerns (costs, delays, resources and
especially specification change) could still remain at the core of the project
and allow a smooth tradeoff with all the functionality that was designed.

Solution
TableNOC is a tool for visualizing and interacting with telephony network
data implemented as a research and development partnership between
Ivrnet and the Agile Surface Engineering group at the University of Calgary,
funded by an NSERC Collaborative Research and Development Grant.
TableNOC’s goal is to better support decision-making within a NOC by
providing automatically-generated visualizations of the past and current
state of the network that can be explored for greater understanding.

In order to facilitate collaboration and increase ease of use, TableNOC
is implemented as a touch-enabled application. Further, TableNOC is

335

implemented as a web application in order to enhance cross-platform
compatibility. While we found this to be benefi cial, it is worth noting that
supporting touch uniformly across a variety of platforms and browsers can
be a resource-intensive proposition.

At a very high level, TableNOC generates visualizations either from static
fi les or from polling web services and displays these visualizations to users.
This is accomplished by tying together a variety of different systems. A
description of how TableNOC works for real-time data is shown in Figure 2.

. . . Incoming
Calls Routers

Telephony
Services

SQL
Server

TableNOC

OpenLayers

Carress

MapServer

. . .

Figure 2. Architecture of TableNOC.

Phone calls and texts are initially handled by Ivrnet’s routing hardware,
which forwards these as appropriate to other hardware within the system,
where the calls are redirected to further hardware or software systems for
handling. The routers also create a record of the call in a centralized SQL
Server database. This database, or replications thereof, can be used for
storing and geolocating (fi nding the geographic location of the source of a
call or text) data.

Next, we use MapServer (http://mapserver.org/) to pull data from the SQL
Server and create map layers – mostly-transparent images showing some
form of visualization, such as lines representing provincial boundaries or
points representing the origin of a phone call. It is important that these
images are mostly transparent in that this makes it possible to stack them
on top of each other without losing the ability to see underlying layers.
Because of this, it is possible to build visualizations out of discrete layers,
such as a base map of Canada below a layer showing the point of origin of
calls received by Ivrnet. We use OpenLayers (http://www.openlayers.org/) in

336

order to keep track of, and appropriately stack these layers. The TableNOC
web application then displays the layers provided by OpenLayers for users
to interact with.

In order to avoid issues with touch input that will perform differently on
various operating systems with multiple web browsers, TableNOC makes
use of Caress (http://caressjs.com/), a JavaScript-based touch and gesture
toolkit. This allows us to consistently handle touch input independent of
individual browsers and systems.

Design for Multiple Form Factors
We expect TableNOC being used in two main use cases: information
radiation and data exploration.

An information radiator is a large, easy-to-read display posted in a public
area so that people can quickly understand information of value to them
(Cockburn, 2004). TableNOC is intended to be displayed in a highly-visibly,
collaborative space, so people can get an idea of what is going on with the
whole network with a glance.

In order to achieve this, TableNOC was designed to display a high-level
overview of the status of a network using different symbols, colors, sizes,
and links between elements. In the near-real time visualization mode
(explained in more detail below), for example, TableNOC denotes call
centers using a telephone icon; denotes the number of calls coming out
of a given area code as a circle with increasing size and increasing redness
indicating higher call volume; and draws a link between the source of a
call and the call center that handles that call. This link will grow larger as
the number of calls increases. In this way, we aim to communicate through
high-level visualizations so that people spend less time digging for details.
If network operators need to obtain more detailed information about a
smaller geographic region, a specific call center or call source, we have
designed TableNOC to also work on personal touch-enabled devices such
as tablets. As described in the section below on TableNOC’s touch-enabled
web interface, users are able to quickly navigate TableNOC’s visualizations.

Visualizing Historical Data
One of the major use cases for TableNOC is the visualization of large
amounts of data covering various slices of time. This can be useful for
answering questions about how the customer base of a service behaves as
a whole. For instance, in one service for a customer who only did business
within Canada, we became curious as to why we were getting calls from
outside of Canada and how we should handle these calls.

We created a heatmap visualization of over 300,000 call records from a
single month. In this sort of visualization, the size and color of circles on
the map is tied to the number of calls coming from that region – similar to
Figure 3. This visualization allowed us to understand a good amount about

337

our customers – including, where the highest volume of calls was coming
from. For understanding historical trends, we added an additional feature to
allow us to view the data in more discrete time slices. Similar to the concept
of a time series, we added a feature to allow users to restrict the heatmap to
only data collected within certain time periods. This enabled us to see that
calls from outside of Canada were only occurring later in the day – perhaps
symptomatic of customers on vacation. This implied to us, that these calls
still needed to be handled even though they were coming from outside the
expected business area. By stepping through different time slices, we help
users gain an understanding of how the network functions during different
discrete intervals rather than just as a whole, allowing more fi ne-grained
understanding of the network.

Figure 3. A heatmap visualization.

(Near) Real-Time Visualization
Beyond the fi rst major use case for TableNOC, it can also be used to
visualize the network in near real-time (NRT). This is benefi cial to keep track
of a situation as it evolves. For example, we can use the system to monitor
how the quality of service provided by a call center changes over time.

Figure 4. (Near) Real-time visualization.

The NRT visualization differs from the standard heatmap visualization in that
it also provides a link between the source of a call and the call center at

338

which it is ultimately answered. This link increases in size as more calls are
directed into a given call center, providing a visual representation of call
volume (see Figure 4). Importantly, network operators can visually identify
ineffi cient call routings, just by viewing a graphic link between source and
sink for calls. While individual calls are not expensive on their own, the large
volume of calls handled by Ivrnet means that even small savings add up
quickly, so identifying when sub-optimal routing paths are being used is a
valuable feature.

Further, we can monitor characteristics of calls – such as whether the
caller hangs up before a service representative picks up or how long on
average a caller has had to wait before being served – in order to gain
an understanding of call quality. This allows network operators not only to
quickly understand if a problematic situation has occurred, but also gives
them more context about where problems are occurring compared to the
traditional system (Figure 5).

Figure 5. The existing NOC.

Detailed Summaries
The visualizations described thus far have been focused on providing
a high-level view of the network so that problems can be spotted across
the network as a whole. However, we also included features to gather a
summary of network data from within TableNOC itself to enable users to
access specifi c details about the network without having to access the data
directly.

First, TableNOC presents a summary of all data in currently active layers.
This summary is accessible through a tab on the main interface and, for

339

historical data, shows the number of calls represented by currently-enabled
visualizations.

Second, it is also possible to single-tap on points within a heatmap to get
a summary of data pertaining to that location. If a point representing a
call center is selected, a summary will pop up showing the number of calls
currently in progress, the number of calls that disconnected before they
were answered, the average length of a call, and the maximum length of
any call answered by that call center. This allows us to alert customers to
issues pertaining to their own services – for example, average call center
wait time.

Touch-Enabled Web Interface
TableNOC’s interface was designed to be as cross-platform as possible in
order to cater to clients with different preferred operating systems. However,
this proved to be significantly challenging as we designed this application
to be touch-enabled, running on various types of devices. Initially, we
ended up writing custom code for handling touch interaction in various
popular browsers. However, this quickly became impractical. In order to
keep touch interactions working consistently, we turned to a tool designed
for this purpose: Caress.

Caress is a JavaScript implementation of the TUIO protocol that allows us to
directly receive and interpret touch events in a cross-platform way. By using
Caress, we can bypass the idiosyncrasies of how individual web browsers
handle touch events and focus on implementing touch interactions.

In TableNOC, we use touch as a method to help users explore data. Users
can perform standard map-based interactions such as pinch/zoom and pan
actions. The entire interface is also designed to be large enough to interact
with via touch on a tablet such as a Microsoft Surface or iPad. Further, on
maps with regions defined by shapes (school districts, provincial boundaries,
electoral districts, etc.), we have experimented with the ability for users to
select specific regions in order to narrow down the data that is presented
in summaries.

Data Import System
Currently, users can specify either static, local files or web services as data
sources. For files, users do not need to know how the file is delimited and
which columns contain geo-locatable information, whereas for web services,
the schema will need to be known. Once the data source is determined,
users then create layers in order to determine what sort of visualization
they want to use. Finally, users are able to add filters to layers in order to
visualize only data from the data source that meets the given criteria. The
system guides its users through the process of uploading data and creating
visualizations in an understandable manner so that technical expertise is not
required to perform these tasks.

340

Pilot evaluation: Design Critique
As opposed to a focus group, a design critique is a meeting with users
where the discussion is not oriented towards new features or items but
instead to decide if a prototype, with specific features, is fit for use and how
it can be improved. The goal of a design critique is to refine the existing
application rather than create new elements of design. It has been defined
as “a process of discourse on many levels of the nature and effects of an
ultimate particular design” (Blevis, Lim, Roedl, & Stolterman, 2007). It can
be focused on certain aspects of the product to make it more efficient: in
our case, we had three major questions to answer:

• What missing functions would enhance TableNOC?

• Why were users not drawn to use the software yet?

• How can TableNOC’s usability be improved to make users more
efficient?

A design critique appeared to be a good choice given that we wanted to
find out if people would actually use TableNOC and its available resources.
The design critique has the major advantage of being a rather fast method
for collecting information, which is a precious point given the fact that our
users are – due to Ivrnet’s business model – not likely to be available for
research purposes. Therefore, it is a great alternative to a more traditional
survey that would have taken more time and resources from our users.

User Profiles
We had the opportunity to run our pilot evaluation with participants with
three different roles within Ivrnet:

• P1, the operation/support team manager. Runs daily reports on
the system health and manages the NOC. In charge of dealing with
problems with the network.

• P2, the network manager. Sets up Ivrnet’s network architecture, and
is in charge of monitoring hardware settings and health. If a piece of
hardware fails, he is responsible for replacing and reconfiguring it.

• P3, a senior manager. Keeps track of situations to communicate
efficiently with customers or the rest of the management team.

These roles are different but similar: the business needs (from a TableNOC
perspective) are the same but with a different scale. Each user is interested
in visualizing the NOC status from a different level of abstraction. P2 is
interested in hardware statuses and the availability of equipment, P1 is
positioned a bit higher and needs to see the statuses of services and log
file sizes, whereas P3 needs to have a complete overview of the network.

Protocol
In order to be able to run a design critique, our users first had to be exposed
to TableNOC. This was done in two ways. First, it was left running on a large
flat-screen TV in the development/operations meeting room. The goal of

341

this location was: 1) to make people aware of the application and to draw
attention to it; 2) to make key information available to operation people,
especially during meetings in collaborative spaces.

Second, we demoed TableNOC in detail to each participant and provided
him or her with access to the system. The goal with this phase was to
provide the application as-is to the users, giving them the opportunity to
use TableNOC in their own work and on their own time. This was intended
to evaluate the relevance of the use cases we identified and see if there
were use cases we did not address. Another expected effect was to favor
serendipity, and determine if our users would interact with the application
to discover unpredicted new ways of working with the tool.

Findings and Analysis
Even at a prototype stage, TableNOC proved useful from a business
perspective in a broad range of situations. First, it has been used for data
representation and analysis. Ivrnet has used it for the visualization and
analysis of network data on several phone surveys. TableNOC was used
to display this data in a graphical manner and to visualize trends across
geographic regions. Another example is the texting project wherein users
text into the service to get information about upcoming services at specific
locations. As a result, using TableNOC’s visualizations, it was possible to
infer information about demand-for-services at specific locations. This was
visualized using a heat map representation, similar to Figure 3.

Second, TableNOC was also running at a research facility at the University of
Calgary during several events involving unusual and very high call volume
into services. TableNOC was set up to monitor in real-time. During these
events, TableNOC immediately displayed a change from the nominal
situation due to higher phone call traffic and failed phone calls. Further, the
researchers noticed this activity very close to its start and, upon getting in
touch with Ivrnet staff, found that they had in fact used TableNOC to detect
an unusual network situation.

From our interviews with our users, we had mostly positive feedback on the
software. Critics were not oriented towards wrongly targeted features and
were very constructive. Most of feedback was about additional features that
would make the software perfectly suitable for each user’s needs. The critics
can be summarized from high-level interface issues to low-level hardware-
related issues.

We sort the feedback into three categories: Missing Features, Usability
Issues, and Technical issues. Features include all the items that would make
TableNOC really useful to whoever makes the comment, whereas Usability
addresses usability issues and suggested improvements.

Missing Features. The main missing feature of TableNOC is the call center
detail display. Two of our users mentioned that they would like to see

342

everything that is related to the different call centers that Ivrnet interacts
with across the country:

• Detailed call center information: Total call count, average call length,
total call time, number of calls per queue and per call center, etc.

• Concurrency graphs of phone calls

• Static graphs showing capacity vs. load

• Cost of common call routings

• Show the main contributors in the traffic at and between call centers

Another request was to display more information about the phone calls
themselves: What are the status of the current phone calls, especially if the
call fails, and the ability to trace the phone call not only geographically but
also on a traditional (symbolic) network map between different pieces of
equipment at Ivrnet’s office.

The last item is about the different pieces of hardware that are in the
call centers and in the NOC: TableNOC should be able to display the
current health of the different pieces of equipment and to show important
information from the logfiles.

Usability Issues. Although a lot of time has been spent on paper prototyping,
some usability issues remain. TableNOC’s response time was most annoying
to users. Load and reload operations are quite long and tedious, bringing
the user to a halt in his or her work experience with the software. Some
of this issue has been addressed by introducing cacheing during zooming
operations, preventing the screen from going blank while waiting for images
and visualizations to reload.

Some of the controls received bad reviews, too: their size appeared to be
too small for touch interaction on certain devices. The layer management
widget lacked feedback on which layer groups are active or not, making
layers nested within a folder structure difficult to use.

Technical Issues. Most of the technical issues encountered by our users
were browser-related. Chrome seems to have difficulties supporting the
application, especially on MacOS X or when handling touch interactions.

Conclusion. As a conclusion, users were really pleased and enthusiastic with
TableNOC, and it appears to be a success from a user experience point
of view. However, the missing features were responsible for the fact that
it was not used as much as we hoped. Using surfaces for supporting NOC
operations in an industrial context seems to be the right move, but our
pilot study shows that without a very good integration with the business’
equipment and servers, such a tool remains incomplete. A fully functional
application tied to the data coming from the core of the NOC, will be of
great interest for all the users interacting with the NOC and fully support

343

their day-to-day activities, allowing them to focus on what is important
about the NOC.

Related Work
TableNOC is at its core, a network visualization tool. Several related tools
have been produced, and research publications have also taken several
approaches similar to ours. In order to restrict the amount of work discussed
in this section, we focus on tools and publications that present geospatially-
focused visualizations.

Related Tools
In terms of tools, two are important to note: Ni3, by DocsLogis (DocsLogic
Healthcare Solutions, 2013); and the Vodafone Fixed Network-Visualization
Tool for ArcView GIS (FVT) (Belfqih, 2003).

Ni3 is noteworthy in that it presents a geospatial view of a network including
standard GIS features such as panning and zooming while also including
functionality for obtaining detailed information about specific nodes in the
network. For example, it is possible to overlay various charts describing
the characteristics of a network – similar to TableNOC’s ability to tap on
a node to bring up data. However, this tool is not optimized for real-time
visualizations and is not designed for easy, touch-based interaction.

In addition to providing visualizations similar to Ni3, the FVT is interesting in
that it includes a data upload tool similar to the one presented in TableNOC.
This feature allows users to configure FVT to pull data from given databases
and generate reports from within the tool itself. However, unlike the version
presented in TableNOC, FVT is not geared towards non-technical users.

Related Research
There is a large body of existing work on network visualizations. In order
to narrow the field considered in this paper, we restrict out discussion
here primarily to geo-temporal visualization systems. Within this area
most existing research focuses on either trend analysis or interactive data
exploration.

Tools that focus on trend analysis provide some sort of automated pattern
recognition to better help users understand what aggregate data means
(Roe, Murphy, & Schmidt, 2009), (Eick, Eick, Fugitt, Heath, & Ross, 2008),
(Behnischa, 2010), (Malik, Maciejewski, Hodgess, & Ebert, 2011). This can
be done for example using statistical processes – like correlation coefficients
– in order to understand if the current state of the data is abnormal (Malik,
Maciejewski, Hodgess, & Ebert, 2011). However, this is difficult to visualize
directly and can involve displaying the data in a non-spatial format – such
as a correlation coefficient displayed alongside a geospatial map. While
this is useful for understanding the behavior of a system, it does not take
advantage of the essentially geographic nature of the data, leaving room
for future work in this direction.

344

Tools that focus on visualization exploration tend to be systems that promote
user interaction with the data (Roe, Murphy, & Schmidt, 2009), (Behnischa,
2010), (Andrienko, et al., 2010), (Malik, Maciejewski, Hodgess, & Ebert,
2011), (Zhang, Korayem, You, Erkang, & Crandall, 2012), (Jänicke, Heine, &
Scheuermann, 2013), (Patroumpas & Sellis, 2012), (Nagel, Duval, & Moere,
Interactive exploration of geospatial network visualization, 2012). These
systems aim at helping users analyze information through the process of
exploring visualizations – by examining different areas of a map at different
zoom levels and at different times, for example (Hoeber, Wilson, Harding,
Enguehard, & Devillers, 2011), or by allowing users to easily switch between
time series interactively (Malik, Maciejewski, Hodgess, & Ebert, 2011). The
end goal is often to help users intuitively understand a network without
resorting to automated trend analysis – instead presenting the data through
visualizations that allow humans to more easily perceive patterns.

Of course, some systems make use of both of these approaches – presenting
trend analyses in a form that users can explore to gain additional insight into
a system (Behnischa, 2010), (Malik, Maciejewski, Hodgess, & Ebert, 2011),
(Zhang, Korayem, You, Erkang, & Crandall, 2012). In (Zhang, Korayem, You,
Erkang, & Crandall, 2012), for example, data is automatically clustered
based on spatial and temporal patterns, but then presented in such a way
that users can explore the data further to find additional trends on their
own.

Some research has also focused on taking an essentially collaborative
approach to visualization of real-time geospatial temporal data. In (Nagel,
Duval, & Moere, 2012), the tool was designed to run on a digital tabletop
– a good environment for encouraging multiple people to interact with an
application simultaneously. Similarly, (Nagel, Duval, & Heidmann, 2011)
focuses on analyzing co-authorship data through a digital, table-based
application. Both of these methods encourage groups to engage with each
other in the exploration and understanding of data.

Limitations of our Approach
In spite of all the features provided by TableNOC and the encouraging
results of the pilot study presented in this paper, some weaknesses remain.
First, the software is limited in various ways. The current version does not
support multi-screen or multi-device interaction, preventing multiple users
to interact with TableNOC at the same time. This restriction to single-user,
single-device interaction strongly limits the collaborative aspects of the
software and will need to be corrected in the near future.

Pilot Study
The pilot study itself also suffers from limited participation. Although the
user profiles selected make sense in the business perspective of TableNOC,
interviewing only three users is slightly restrictive, and the quality of the data
collected in the presented pilot study would greatly benefit from additional
participants. With more users operating TableNOC during a greater time

345

interval, this would allow us to integrate different data collection techniques
such as shadowing, interviews, and questionnaires, improving the iterative
design process with quality data.

Connectivity
Functionality-wise, TableNOC is far from being perfect, which is
understandable given that is it still a prototype. The current implementation
only supports very specific kinds of data and frequently requires
customization. Connecting TableNOC to Ivrnet’s call centers not only
requires development on the software side, but requires Ivrnet to expose
specific services and APIs for retrieving the right information. Finally, the
data import feature is restricted to the .csv file type and does not support
other formats, which requires the user to be able to manipulate different
data types, potentially requiring a good knowledge of data management or
powerful equipment dedicated to handling large amounts of data.

Information Visualization
Lastly, the visualizations used also need to be reviewed. We are still searching
for the correct visualizations to represent different elements of the NOC and
the additional data that might overlap it. The issue here is that we need to
adapt the representation not only to the data, but also to the quality of the
data. For example, displaying the calls will only cause one dot to appear
over the city of Calgary, as there is only one routing point that the calls
transit to, for this city (that is accessible to Ivrnet). The first reaction might be
to increase the accuracy of our geo-location, as we currently limit precision
to just the area code of a phone number. However, as the precision of our
geo-location of calls increases, there will be additional privacy concerns to
consider.

Future Work
The ultimate goal with TableNOC is to make it suitable for use within a
networking / communications business such as Ivrnet. We clearly see that
TableNOC missing features and usability flaws make this difficult at present.

Future improvements will include adding additional static data types (excel,
database extracts, etc.) and data sources (web services discovery, database
connection) in order to expand the range of data displayed. It will also
include expanding the set of symbols representing the different phone call
elements: allow the display of call direction, infrastructure type (PRI, SPI,
etc.), length, etc. It would also be possible for the user to determine which
symbols and colors to use when importing data and building layers.

We also hope to add in artificial intelligence support in order to help identify
trouble situations and optimize future network performance. Performing
retrospective analysis of past trouble situations and the solutions used to
overcome them will do this. On a basic level, we hope to be able to notify
network operators that a sequence of events which indicates a problem is
about to occur has happened, allowing these personnel time to prepare for

346

– and ideally prevent – such a situation from occurring.

We also envision a multi-surface environment, where multiple users would
view TableNOC on their own personal or collaborative devices, but sharing
the same underlying data model. This would allow easy sharing of data
layers or views and improve communication especially between the
different types of users. This would beautifully tackle the situation where a
manager is monitoring the evolution of a situation through the same tool
as his operations team is using for troubleshooting, but with a different
perspective on the data.

Finally, we would like to run a more extended evaluation of TableNOC.
Ideally, this would involve more than one business, as we aim at having a
greater overview of what the needs are for geo-located network monitoring.

Conclusion
This paper presents TableNOC, a tool that allows the geographic monitoring
of large-scale, country-wide networks and its application within Ivrnet. It is
meant to be used at the heart of the communications business using it, in
its NOC. Its goal is to provide a geographic overview of network activity.

The results of the pilot study we conducted were encouraging and showed
that there is a need for such a tool. People usually deal with a lot of raw data
in the form of automatic reports and log files, and displaying all this data in
a geographic way to encourage exploration seems to be of great value for
the network operators. Therefore, there is no doubt left about the need of
such an application.

This tool is expected to have a significant impact on the way the network
businesses work. Although there is a certain reluctance to using it, explained
by the fact that TableNOC is only at a prototype stage, the features offered
support key elements of the user’s work: efficiency, detection of failures of
equipment or interfaces, prediction of crisis situations, etc.

One major difficulty is that the domain is specific to every company and
use case, and so is the data displayed. As a consequence, the use of
TableNOC is subject to heavy development work in order to customize it
to the architecture of the company before it can be used. Once TableNOC
reaches a certain maturity, it is expected to offer sufficient configuration
options to accommodate a large variability of domain uses.

347

Beyond Efficiency: Intriguing Interaction for
Large Displays in Public Spaces

Uta Hinrichs, Alice Thudt, Lindsay MacDonald, Miguel
Nacenta, John Brosz, and Sheelagh Carpendale

Introduction
The requirements for interfaces and interactions in public spaces vary
considerably from desktop interfaces. This chapter will discuss three pieces
of research that took place in public spaces. One, the first in this chapter,
is a study of an existing an installation, the other two are installations we
created. Over the duration of SurfNet we have installed and studied several
installations of large displays in many different public spaces ranging
from art galleries to libraries and museums. Each installation is unique in
its goals and aspirations. We will discuss factors that affect the degree to
which an installation is attractive and intriguing, being able to gather and
hold attention, including the use of concepts from serendipity and complex
adaptive systems to move towards possibilities of endlessly fascinating
interaction.

This chapter draws primarily from these three papers. We will discuss them
in order of publication.

• Uta Hinrichs and Sheelagh Carpendale. Gestures in the Wild:
Studying Multi-Touch Gesture Sequences on Interactive Tabletop
Exhibits. In CHI ‘11: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, pages 3023–3032, 2011.

• Alice Thudt, Uta Hinrichs and Sheelagh Carpendale. The Bohemian
Bookshelf: Supporting Serendipitous Book Discoveries through
Information Visualization. In CHI ‘12: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, pages
1461—1470, 2012.

• Lindsay MacDonald, John Brosz, Miguel A. Nacenta and Sheelagh
Carpedale. Designing the Unexpected: Endlessly Fascinating
Interaction for Interactive Installations. In TEI ’15: Proceedings of
the Ninth International Conference on Tangible, Embedded, and
Embodied Interaction, ACM pages 41–48, 2015.

348

In this chapter, we draw attention to three factors that we have found
particularly important for large displays in public spaces:

1. Gestures and/or touch interaction, as used in real world situations
(commonly referred to as ‘in the wild’ in our literature), are not simply a
replacement for menus and buttons. Instead these types of interactions,
because they involve our hands and bodies in situations where people,
both friends and strangers, can see us play additional, often more
important roles than triggering a system response. In these situations
gestures form an important part of our social interaction. Thus gestures,
while they do start interaction response, must fit seamlessly into the
social activities that are currently taking place (Hinrichs et al., 2011).

2. Serendipity can be far more important than the occasional introduction
of randomness. Serendipity is linked to several factors that can be
programmed for. We describe an example interface that makes use of
serendipity. However, these factors can be embedded in other interfaces
(Thudt et al., 2012).

3. As more information gets placed on large screens in public spaces,
much concern is being focused on attracting and maintaining people’s
attention. The third section of this chapter presents work towards, what
might seem like an unrealistic goal, achieving endlessly fascinating
interaction (MacDonald et al., 2015).

Gestures in the Wild:
Studying Multi-Touch Gesture Sequences on Interactive Tabletop Exhibits
In this section, we present the findings from a field study that was conducted
at the Vancouver Aquarium. We use the phrase ‘in the wild’ to refer to the
fact that these interactions were taking place in an uncontrolled environment
where people were choosing to interact with these displays of their own
volition. In this study we explored how people make use of multi-touch
gestures on an interactive walk-up-and-use tabletop exhibit. Our findings
show that multi-touch gestures are conducted in a temporal sequence. That
is, gestures are deeply embedded in an interaction context where previous
gestures influence the choice of subsequent gestures. In addition, the choice
of gestures is influenced by a social context that includes impact from the
age of visitors, the visitors’ personal opinions on the content shown, and the
social encounters that are happening around the display. In observing these
multi-touch gestures in the wild, we saw:

• a large variety of multi-touch gestures for actions,

• interaction context as an important concept that implies the need for
fluid gesture sequences,

• differences between adult’s and children’s use of gestures, and

• that choice of gestures is influenced by the social context.

349

Figure GW1. These images provide examples of the types of interactions we

observed.

Background. Multi-touch technology has been around for some years now
and we starting to have commercial products that support multi-touch
gestures. The ability to touch a display surface and directly interact with
content directly has been found to be pleasurable and fun.

In public environments, such as museums, there has been a clear increase
in the use of direct-touch technologies that allow the public to explore
exhibition content in direct and playful way. This has many advantages,
including:

• there is still a certain novelty effect for direct-touch technology,
particularly when used on large displays,

• no external input devices are required, and

• the interaction is very visible which can draw the attention of other
visitors, and at the same time teach the visitors how to interact.

Applications in these spaces are becoming more and more sophisticated
and often now make use of multi-touch gestures for exploring digital
information. However, the audience in such spaces is broad and their
experience with technology might differ quite a bit. Furthermore, visitors
usually interact for very brief periods of time with each exhibit. This can be
extremely brief, for instance, two minutes is considered a long time. Given
this environment, people are unlikely to read through elaborate instructions
on how interact with a touch display exhibit. Thus it is important to design
multi-touch gesture sets that can be used in a walk-up-and-use manner.
Public scenarios, such as these, really demand that the gestures used can
be applied in an intuitive walk-up-and-use way without prior practice or
elaborate instructions.

In our study, we were interested in characterizing the multi-touch gestures
that people actually apply in walk-up-and-use scenarios. For instance, there
are many factors that infl uence the choice of gestures. These may well
include factors such as general preferences and whether the people are
children or adults or elderly.

This study took place in the Vancouver Aquarium’s Arctic Exhibit.

350

Figure GW2 (top) & 3 (bottom). The Vancouver Aquarium Arctic Exhibit.

While we were interested in how people interacted with the table top
displays, these displays were in a public setting – the Vancouver Aquarium’s
Arctic Exhibit. The Arctic Exhibit included a large aquarium with many
graphic and digital displays. Figure GW3 shows the two interactive tables
in the foreground. Both the displays and the interactive software for these
displays were built by Ideum.

The interactive software for each of these tables was quite different. One
was map–based with relatively formal controls. The other, the Collection
Viewer, included much more freeform interaction. For this analysis, we
concentrate on the Collection Viewer.

Figure GW4. The Collection
Viewer Media items, both images
and videos could be freely moved
around the display, could be
resized, and the videos could
played at will.

To collect data, we positioned two cameras as shown in Figure GW5, left.
Figure GW5, right shows the camera views from the top and from the side.

351

We also sat nearby and took fi eld notes.

Figure GW5. Camera positions and the views seen from them.

We conducted in-depth video analysis, coding 926 gesture instances. When
coding the gestures, we included such factors as the number of hands
touching, the numbers and types of fi ngers touching, the hand postures
and the hand motions. Figure GW6 shows a sample of coded gestures.

Figure GW6. A few sample gestures and their associated actions.

Figures GW7 and GW8, respectively show a variety of gestures with (Figure
7) drag/move intentions and Figure 8, resize actions.

Figure GW7. Gestures for drag/move actions.

Note, in Figure GW8, the great amount of gesture variety for a single action
intent: resize. Note that people also sometimes use one and sometimes
two hands.

352

Figure GW8. Resize actions.

Gestures in Context
People combined gestures into fl uid gesture sequences. Hand postures
and touch points remained relatively stable with only hand motions being
adjusted. In Figure GW10 you can see that after using an expanding pinch
gesture with thumb and middle fi nger, that same touch position and hand
posture is maintained but now the gesture is used for dragging. In other
circumstances this posture is quite uncommon for drag/move actions.

Figure GW9. Gestures had some similarity to
gestures with physical objects such as asymmetrical
use of dominant non-dominant hands.

Figure GW10. The same hand posture is used for both expand and drag/move.

Figure GW11. This is an illustrative sequence of actions, showing how a fl uid
interaction gesture sequence works. This fl uid gesture sequence starts with a one

fi nger, one touch move action. Next, keeping the fi rst hand posture and touch
the same, the person adds a second one fi nger touch to provide the two touches

needed for fi rst resize and then rotate.

Children Visitors

Figure GW12. Many of the visitors were
children.

353

Figure GW13. Children visitors used more content-independent actions such as
sweeping display clear and fl icking media items across the display. Their gestures

tended to be more coarse-grained and imprecise.

Figure GW14. Some of children’s interactions were competitive such as large-scale
gestures to maintain control of the display space.

Adult Visitors

Figure GW15. Adult visitors tended to use
more content-oriented exploration. This
included more single fi nger and single
handed gestures and more use of rotate
and tap actions to explore the content.

Figure GW16. Adults tended to use small scale gestures on crowded tables,

showing respect for other visitors’ interaction space.

354

Social Context
This discussion is about the social context of the gestures at the tabletop
displays, not the full social context of the event.

Mentoring. People demonstrated gestures to each other. Most often this
was between family members, but sometimes strangers also showed each
other gestures.

Imitating Observed Gestures. Here the person in orange gathers a group of
media items and then the person in purple tries the same gesture.

Gestures for Personal Expression. The girl in red has a strong dislike for
bugs. When she see an image of a bug says “No Bugs” and pushes the
image of the bug away with a very expressive gesture.

Gestures in the Wild Summary
Huge Gesture Variety. People used a large variety of multi-touch gestures.
This included using a large variety of gesture for a single type of intended
action.

Temporal Context. The interaction context, that is what a person had just

355

done or said or the position of their hands, greatly infl uenced the gesture
they would take next.

Social Context. A person’s choice of gestures is infl uenced by the social
context, by who they are with and by how the motion of their hands will
harmonize with what they are saying. People did not want to make awkward
gestures. They would attempt to get the action response they wanted with
a fl uid transition from their previous position. This speaks to a need for the
design of fl uid gesture sequences.

The Bohemian Bookshelf:Supporting Serendipitous Book Discoveries
through Information Visualization

Since the possibility of serendipity when searching for books on a traditional
library shelf is so important, we explored the possibility of including support
for serendipity in a digital bookshelf. The main message of this research
is that serendipitous discoveries can be facilitated through information
visualization, by leveraging the factors that encourage serendipity beyond
just coincidence and luck.

Figure BB1. Switching to digital libraries involves many changes but does not
have to include the loss of serendipity. Traditional libraries have dense racks of

bookshelves (left). Digital libraries, where the search for books has become digital,
focus more on meeting and working spaces (right).

For this research, our goal was to better understand how to support open
ended searches and explorations and, if possible, to support serendipitous
discoveries. We start by talking a closer look at the concept of serendipity.
The OED (Oxford, 2011) defi nes serendipity as “the faculty of making
happy and unexpected discoveries by accident”. This defi nition would lead
one to think that serendipity happens by coincidence, luck, chance or other
such factors. In fact, it could be suggested that the introduction of mere
randomness might promote serendipity. However, a deeper look into the
literature including the original fairy tale, the “Three Princes of Serendip”
and literary discussions around this concept point out that serendipity can
be supported in a variety of ways (Andre et al., 2009; Erdelez, 1999; Foster
and Ford 2003; Liestman 1992; Remer 1965; Toms 2000). We group these
methods into those that pertain to the personality traits of the information
seeker and those that pertain to factors from other people and systems they
have developed.

356

Figure BB2. Digital search can be great if you know what you are looking for.
However, it is much more diffi cult if you do not know what you are looking for. For
example, searching for something open ended such as ‘I want to fi nd something
I will fi nd exciting’ or ‘I want to fi nd something my mother-in-law will like’ is not
really supported in current digital search. It is hard to use digital search for open

ended explorations.

The personality traits of an information seeker that promote serendipity are:

• knowledge – having some prior knowledge can make it more
likely that a person will fi nd what they want;

• open-mindedness – being willing to think open mindedly can
help a person discover the usefulness of surprising factors; and

• perseverance – being willing to keep on looking.

While we individually can culture these practices and probably promote
serendipity in our own lives, they are not the type of factors that can be
programmatically include in a computer system. To consider how these
factors work in one’s personal life, consider the well known story of Sir
Alexander Fleming (Rosenman, 1988). It is said that he discovered penicillin
serendipitously. He kept a very messy laboratory and one day he discovered
that one of his petri dishes was contaminated by a strange mould. He
was knowledgeable enough to recognize a possibly interesting occurrence,
and open-minded enough to run further experiments with this mould. By
persevering with this direction, he discovered penicillin, which revolutionized
medicine, and he was awarded with a Nobel Prize (Rosenman, 1988).

The factors related to other people and their systems are more hopeful
factors to consider for algorithmic inclusion. Think about a bookstore. It
provides a rich environment for browsing books. It will contain multiple
bookshelves and tables upon which books have been organized in various
ways, such as alphabetically, by theme, by age appropriateness, etc.
Libraries and bookstores provide environments where serendipity is more
likely because librarians and bookstore owners have put considerable

357

thought into how to organize the books. An an example what this could
look like (Book store with multiple shelves and tables. Image © A. Thudt.):

From this second group of factors that relate to other people and their
systems, we have gleaned fi ve approaches that we can introduce
algorithmically: multiple access points, highlighting adjacencies, enticing
curiosity, fl exible pathways, and playful exploration. These fi ve approaches
for supporting serendipity are diagrammatically illustrated in Figure BB3.

Figure BB3. Five methods that systems can include to support serendipity.

Offering multiple access points provides people with different ways of
entering into the search. These different access points offer different points
of view or different perspectives as the information can be approached from
different angles.

Highlighting adjacencies provides reinforcement that may help people make
connections. For instance, one type of adjacency is topic. People often fi nd
interesting books unexpectedly while browsing through library shelves where
books have been organized by topic. Books in close proximity on the shelf
often capture attention. However, while bookshelves because of physical
limitations can only offer one type of adjacency, digital visualizations do not
have to rely on physical proximity to provide indications of adjacencies, and
thus can offer many different types of adjacency.

Serendipitous discoveries have also been attributed to curiosity, which is
a factor in open-mindedness. Visualizations, visual metaphors and visual
aesthetics can be used to entice viewers and to promote curiosity thus
initiating further exploration. Providing fl exible pathways lets people
explore at will, encouraging their own curiosity. Offering playful interactions
can further extend investigation by making interactions more fun.

Using these fi ve factors makes it possible for a visualization to be designed
to provide a series of unusual perspectives on a data collection. Together

358

they can offer support of open-ended, exploratory search strategies that go
beyond querying, and can support navigation of information collections in
open-ended ways. Non pre-determined pathways can constantly offer new
crossroads through the collection and multiple interactive overviews can
act as visual guides, offering adjacent information as visual signposts. In
this way play can be a facilitator for creative search and may also facilitate
serendipity. Making information playful and pleasurable may also encourage
people to persevere leading to longer explorations.

Figure BB4: Bohemian Bookshelf installation. Image © A. Thudt.

The Bohemian Bookshelf
To provide an example of how these guidelines can be used, we developed
the Bohemian Bookshelf prototype. It works with a small dataset of books
and can be used on a touch interactive display in a library space as well as
on a website. Figure BB4 shows the Bohemian Bookshelf installed at a local
library. Figure BB5 provides a view of the combined visualizations that make
the Bohemian Bookshelf.

Figure BB5. Bohemian Bookshelf showing the fi ve visualizations and one selection.

359

The Bohemian Bookshelf interface consists of fi ve visualizations that each
focus on different book attributes (Figure BB5). Some represent aspects
that are common in digital search interfaces, such as keywords and author
names. Others focus on visual and tangible characteristics that can be
experienced in physical libraries, such as colour and pattern of the cover, or
the thickness of the book.

The Cover Colour Circle shows the distribution
of cover colours in the book collection. As you
can see in the adjacent image, in this dataset
there are more orange books than green or
blue books. It is possible to browse through
the Cover Colour Circle by moving your fi nger
or mouse across the visualization. The covers
that bubble up can easily be selected. The
colourwise adjacent books are shown adjacently
to the selected book.

The Keyword Chains visualization shows
keyword connections between different books.
The selected book is shown in the center
and all its keywords branch out from it and
form connections to other books that share
a keyword with it. The keyword chains can
be stretched out to facilitate reading. When
an adjacent book is selected, it moves to the
centre and new keyword chains form around
it. In this way, people can navigate through the
collection by following keyword connections
between the books.

The Author Spiral orders the books
alphabetically by author name. We used a
parchment metaphor to visually represent this
author list. People can fl uidly browse through
this list by scrolling up and down in the list.
Due to the alphabetical ordering, books from
the same author appear next to each other.

360

The Book Pile visualizes the page count
of the books in the library. Thicker books
are represented by larger squares and
are located on the top of the pile, while
the books that have fewer pages trickle
down to the bottom of the pile. It is
possible to fl uidly browse through the
pile. For the selected book, the actual
number of pages is shown and books
with a similar page count are highlighted
by showing their covers.

The Timelines focus on temporal aspects
of the books. The top timeline shows
the publication year, while the bottom
timeline shows the time period the
book is about. Books are represented
by the thin lines that connect both
timelines. The book that is selected
here for example is published in 2001
and is about a time period in the 17th
century. People can browse through
the visualization by moving their
fi nger across these connection lines.
Furthermore, it is possible to zoom into
the timelines to take a closer look at a
certain time period of interest.

Bohemian Bookshelf
The interface shows all fi ve visualizations at the same time. The visualization
in the center is shown slightly larger. People can switch between the
visualizations by using the arrow buttons. All 5 visualizations are interactive
no matter what location they are in and they are all interlinked with each
other. When a book is selected in one visualization, the others change
accordingly to bring this book into focus across all of the visualizations.

We installed the Bohemian Bookshelf in a local library, as shown above,
and studied how library visitors experienced this way of browsing book
collections. We interviewed 11 visitors who had used the Bohemian

361

Bookshelf for the exploration of its book collection. We asked about their
thoughts on the differences between this and other search interfaces they
were familiar with, about the role of visualizations, visual aesthetics, and the
large display technology for browsing book collections.

In general people were very positive about the Bohemian Bookshelf and
as they talked to us it was apparent that they were able to understand
the representations:“I’d say like 90% of the understanding is the visual
component. I read the labels, but after looking at the visuals.” [V8]

People liked having the multiple visual access points together in one
interface:“It gives you more options. So if you have more information,
it is easier to have a starting point.” [V8]. “I’m sure each element works
differently for different people. I like having it all together. It kind of promotes
curiosity.” [V11]

The highlighted adjacencies helped people to see relations between
the books and thus follow up on certain areas of interest:“The Bohemian
Bookshelf is a cool tool to discover something new through different
associations.” [V5]

People commented many times about how the interface is pleasant to look
at and they especially noted that the colours and the cover images evoked
curiosity.“First of all the Bohemian Bookshelf catches interest. I don’t know
what the Cover Colour Circle is for exactly, but it makes it more interesting
and then if you stumble upon something, you might want to read it. And
that’s a good way to get people to actually want to read.” [V5]

From our observations, we could see people switch back and forth between
visualizations following up on highlighted books and using the visual
overviews to steer their explorations.“The current way of searching for a
book is, you have to know what it is or just browse through an alphabetical
author list. But with the Bohemian Bookshelf you can kind of branch off
by keyword and find similar books on the same topic.” [V4] During these
explorations the links between the visualizations were used as crossroads
that drove the explorations in new directions.

People really liked the playful approach of the visualizations and commented
several times on how they are fun to use. “You have the touch screen with
all the different covers that open up and you can just pick them. That’s sort
of like browsing. It’s more satisfying than sitting on the computer clicking
through a whole bunch of stuff.” [V9]

We were also very interested in whether or not people actually made
serendipitous discoveries when using the Bohemian Bookshelf interface.
Although we had not informed people about the purpose of the interface,
a lot of people mentioned it could help them to make unexpected book
discoveries:“I think that the Bohemian Bookshelf would be a good way of

362

fi nding new books. You get to see more different books that you might
fi nd interesting later, which you otherwise would never see, because you
wouldn’t be looking for them.” [V4]

People also reported concrete book discoveries they made with the
interface. More than half of the participants were able to name books that
they discovered while browsing, and that they would like to check books
these out from the library. They also explained how they found these
books:“I had no expectations and I just saw an author name that seemed
familiar to my language, and then I thought, well, why not check it out.”
[V11] and“I picked my favourite colour. I picked pink and then I found a
book that I liked.” [V7]

The Bohemian Bookshelf Summary
The main message is that serendipitous discoveries are not just triggered
by luck, chance or coincidence. We can actually facilitate serendipity
through information visualization by leveraging aspects that can encourage
serendipity such as:

 Providing multiple access points

 Highlighting adjacencies

 Enticing curiosity

 Providing fl exible pathways

 Supporting playful interactions

Our example of Bohemian Bookshelf is just one example of an interface that
shows how these guidelines can be realised. Visualizations can be designed
to foster serendipitous discoveries.

Designing the Unexpected:
Endlessly Fascinating Interaction for Interactive Installations
One of our goals for creating installations in public spaces is to make them
endlessly fascinating. This goal sounds diffi cult, if not impossible, to achieve.
In the following we describe one approach to creating an installation that
offers endlessly fascinating interaction, or EFI.

363

We postulate that these conditions must be present in an interactive
installation in order for it to be endlessly fascinating: fi rst, it must be
interesting at any given time; second, the content should not be repetitive;
third, it should present the viewer with multiple possible storylines.

First, here are some of the inspirations for our interactive art installation,
or, some things that we fi nd fascinating. These installations in particular
inspired us because they can all be said to have some degree of EFI.

Krueger’s Videoplace set up an actively dynamic and playful experience
that attracted viewers and encouraged them to explore how the work would
respond to their actions (Krueger, 1977).

Hill’s Tall Ships engages viewers’ interest by having them exchange intense
gaze with projected ghosts on the walls of a corridor (Hill, 1992). Ghosts
approach when viewer is on sensor in front of wall, stay while the viewer
is still there, and leave when viewer steps off sensor. Gaze functions as a
means of getting viewers to relate to the ghosts’ sense of longing with
experiences in their own lives, creating the illusion of an emotional bonding
experience.

Gonsalves’ installation Chameleon sustains viewers’ interest by reading
their facial expressions and having the projected faces refl ect them back,
like an emotional contagion (Gonsalves, 2009).

Another thing we fi nd fascinating is liminal spaces. Broadly speaking,
a liminal space is an in-between space, neither here nor there, such as a
doorway, or a hallway (Thomassen, 2009). Liminal spaces can force us to
adopt behaviour that we see as being socially acceptable in order to avoid
being uncomfortable. For example, in an elevator, we resort to all kinds of
things to cope with being in a confi ned space with a stranger.

Examples of liminal spaces.

364

From this we decided to explore the possibilities for creating EFI in the
liminal space of an elevator. Our interactive installation, A Delicate
Agreement (ADA), is a false elevator with peepholes in the doors.

Figure ADA: A Delicate Agreement (left); gaze tracker (right).

Since we did not want the viewer to have to discover diffi cult actions to
trigger a response from our piece, we made use of incidental (Dix, 2002)
and passive interaction (Nakatsu, Rauterberg, & Vorderer, 2005). Viewers
can affect the unfolding story in this installation with their gaze simply
by looking through the peep holes in the doors. Behind each door, we
custom made a low-fi gaze tracker from a modifi ed webcam and a hot
mirror.The details about this tracker can be found in MacDonald et al., 2015
(MacDonald, Brosz, Nacenta, & Carpendale, 2015).

A Delicate Agreement (Figure ADA) is a site-specifi c installation that explores
concept of EFI. It offers viewers a rich interactive narrative of encounters
between people and viewers. Externally it is a false elevator with peepholes.

1. Challenging setting: A Liminal Space.

2. Create storylines with a Complex Adaptive System.

3. Design interactions with characters based on art and social theory.

Upon looking into the peepholes, the viewer will see a stop motion
animation composed of up to two characters riding in the elevator,
performing behaviours, and getting on and off at appropriate fl oors. Here
are three possible scenes:

There are sixteen characters and they each have multiple behavior image
sequences available to them, totaling more than 40000 still images. Since
each character stays on one side of the elevator for one trip, but may use the
other side for a different elevator ride, the combinatorics of all the possible
combinations is quite large.

365

Here are 4 scenes (left) and 16 scenes (right):

Here are 64 scenes:

And here are many more:

366

Complex Adaptive System (CAS)
We decided to build the sequencing of scenes, the interaction between
the characters who inhabit the elevator using a complex adaptive system
(CAS) (Miller and Page, 2009; Waldrop, 1992; Zeeman, 1976). A CAS is not
totally constrained–actions and interactions are developed based on local
awareness.

A CAS is a system that is neither fully constrained nor chaotic. That is,
there is considerable freedom, but yet there are some rules to be followed.
Individual characters are only locally aware, having no overview of whole
system. An example of this is an economy with individual people as agents
(Waldrop, 1992), or an immune system. Another example is Conway’s
Game of Life (Gardner, 1970), (Marek Fiser, 2013 http://www.marekfiser.
com/Projects/Conways-Game-of-Life-on-GPU-using-CUDA).

Conway’s Game of Life is a prevalent example of a CAS. It uses three simple
rules about living, reproducing and dying, and can produce extremely
complex behaviours. Our agents are our characters, and we have 16 of
them, each with their own set of rules, or personalities. Our agents are our
characters. They each have flexible, responsive storylines, which results in
emergent behaviours. CAS allows us to have a flexible story.

Our simple rule is as follows. To find out what a character, currently in the
elevator will do next, we take their current behaviour, and add to that:

- their impression factor, which is a combination of the current behavior of
the other character in the elevator (if there is one) and the viewer(s) gaze,

- their expression factor, which is the emotional direction they will head
given their impression, and

- the character’s predilection, which is based on each characters emotional
map.

367

After we implemented this CAS as our character engine, we noticed some
emergent behaviours as the stories played out. First, everyone is bisexual.

Second, the one character who was most aggressive created an atmosphere
of fear that spread through the entire ecosystem of the piece, even when he
himself was not present in the elevator.

Since everyone being scared all the time goes against the rule of not being
repetitive in EFI, we decided to introduce an authority fi gure into the story
to keep our aggressive character in check. Things worked themselves out.

368

Third, upon introduction of the extra eight characters and the absence of
fear caused by the gangster character, a new behaviour emerged that we
were not ok with - characters were starting to fl irt with the little girl character.
Unfortunately, we had to fi x this by making the little girl less interesting.

Taking a brief look inside our CAS:
Incidental interaction triggered via gaze. Depending on what area the viewer
gazes at affects the behaviour of the characters in the elevator, depending
on their personality as well. There are 4 possible areas that can trigger a
reaction - the 5th is not looking at all:

Using Narrative and Social Theory
To help us address the interaction challenge of creating a story that unfolds
and is non-repetitive and endlessly fascinating, we made use of interactive
narrative (Bang, 1993) and ideas about interaction expression and impression
from Goffman (Goffman, 1959). We implemented this through our CAS.

To create a character engine for our
CAS, we created a character map for
each character. The personalities look
like this.

For more complex characters, there are more behaviours, and more complex
patterns of squares on the maps. Simpler characters have simpler maps.
The axes of aggression and attention are based on an idea from Nass (Nass
et al., 1995) about personality being defi ned by 2 meaningful dimensions,
extraversion and agreeableness. There are 26 possible behaviours and each
character has a subset of these (MacDonald et al., 2015).

369

Let’s look at a relatively simple character, Phyllis:

370

Each one of these regions corresponds to a sequence of images representing
a behaviour. At any given time, she can only be in one spot on this map.
There are three ways to change her behaviour state, which is represented
here by the green dot in the middle of this map. Here is Phyllis in the
elevator, and her personality or behaviour map.

The next thing that happens is the entrance of another character. At first she
is neutral, and he is angry:

371

Leo’s actions here will trigger a reaction in Phyllis:

In turn, Phyllis’ reaction will determine Leo’s subsequent behaviour.

372

So here they are now in their new states:

The third way a character’s behaviour state can be changed is the progression
of time. As time moves forward, if nothing else happens, Phyllis will gravitate
back to her default behaviour at the center of her map.

Behaviors are not limited to the selection of visual output. Behaviors also
affect the emotional state of other characters in different ways. For example,
the aggressive anger behavior of Leo causes other characters to become
more aggressive. This is the basic mechanism of interaction between
characters: Leo’s anger behavior is his expression and triggers the other
character’s impression. Therefore, the personality grids are a representation
of the visual output of the character.

373

The viewer affects this by staring at one of the characters. This can affect
behaviour, and can also trigger a special acknowledgment behaviour. This
acknowledgment behavior changes according to character.

We chose the liminal space of the elevator as a challenging setting and to
produce endlessly fascinating interaction, we created multiple story lines
with a complex adaptive system. We design interactions between characters
based on art and social theory.

Summary for Endlessly Fascinating Interaction

1. The observed reactions of the piece are both understandable and
intriguing;

2. The viewer is not required to discover difficult or obscure actions
to trigger a response;

3. The viewer does not need to be aware of the effect of their own
interaction; and

4. The story that unfolds is non-repetitive, and endlessly fascinating.

A Delicate Agreement

Conclusions
In this chapter we have presented the results from an ‘in the wild’ study
on natural use of a multi-touch table in the Vancouver Aquarium Artic
Exhibit. We outlined our exploration into the possibility of programming for
serendipity in a visualization based search interface and we described our
use of a complex adaptive system to create a continually changing story
line with emergent behaviours that we hope is a step towards developing
endlessly fascinating interaction.

374

Surface Applications for Security Analysis

Judith Brown, Jeff Wilson, Peter Simonyi, Miran
Mirza, and Robert Biddle

Introduction
SurfNet Theme 2 concerned software development for surface applications.
There were two perspectives, one being the utilization of surface technology
to support the development process, and the other being development
processes that arise in surface applications. Much of the work of our
HotSoft group at Carleton has concerned the latter. Other research of
ours concentrates on human factors in computer security, so we decided
to explore how surface technology might support security analysis. This
specific domain allowed us to investigate how study surface application
design and development in an established context, and thus learn how
the real needs of the domain might best be supported. We were fortunate
to also have partners in industry and government working in the domain,
and therefore able to give us advice and feedback. A number of projects
were conducted over the span of SurfNet, each one offering findings that
informed later projects. In this chapter, we provide an outline our work,
summarizing the each of the main projects, and their findings. Each project
is documented more extensively in other publications elsewhere, and we
provide references to those papers throughout this overview. We conclude
with a summary of our main findings and how they inform the development
of surface applications in general. The main sections of this paper are
therefore as below. We conclude the paper with some discussion about the
general themes that emerged from our work.

• Review of Surface Computing for Collaborative Analysis

• Field Studies of Security Analysts at Work

• ACH Walkthrough: Software to Support Security Analysis

• Ra: Support for Web Application Interaction History

• Strata: Annotation for Web Applications

Review of Surface Computing for Collaborative Analysis
Our first step in this sequence of projects was to conducted an extensive
survey of the area. We covered a wide range of topics, covering not only the

375

literature specifically on the topic, but also on relevant theory and interaction
design, as well as the underlying technologies and development platforms.
The survey was published as 140 page book by Morgan and Claypool, J.
M. Brown et al. (2013). Within the broader context of collaborative analysis
work we particularly discussed co-located analysis work in the security
domain which is typically either network security or intelligence work.

Surface computing is likely to become commonplace in some domains such
as entertainment and education. However, we also expect large surfaces
will serve a primary role in supporting collaborative work. Meeting rooms
and team environments will be designed to feature large surfaces. These
large surfaces, while being a key to enabling more collaborative computing
environments, will typically work in concert with other display devices in
mixed-display environments, where both individual and team devices are
used together to support collaborative work. We believe large displays
and mixed display environments (combinations of large displays, tablets,
smart phones and other types of surfaces) will become ubiquitous in office
environments of the future. In this emerging and novel context, application
software, and especially application interfaces, must be explicitly and
purposefully designed and developed to support surface computing for
collaborative work. This book described current research in this space, and
provided a perspective on it based on our own experiences and expertise.
We first reviewed the underlying technology for surface interaction, especially
looking at large surfaces and novel methods for interaction. We identified
research on surface technology issues that are particularly important to
analysis work. Document flow issues may impact work Individual work on
digital artifacts using laptop and workstation computers in theory should
be compatible with digital tabletops and digital wall displays, since digital
artifacts don’t have to be transformed into analog (paper) artifacts to be
taken to a meeting.

In practice, however, the problem of moving digital artifacts seamlessly
between surfaces has not yet been resolved. Also important is that human
communication is rife with indexical references, i.e., pointing, which involves
verbally or physically indicating something. In artifact-rich environments
pointing behaviour is common and saves much time. Other issues arise with
multiple display environments including both small and very large displays,
with diverse kinds of displays being used together. Interaction design for
surface computing presents novel challenges that are not easily solved by
mechanisms used for traditional desktop interaction design. Menus and
scrollbars may become things of the past, and new approaches to pointing,
selecting, and hovering are required. Gesturing is the emerging approach,
and is still evolving. Easy text entry and interactor identity remain challenges.

Research has clearly shown there are many advantages for large displays
for individuals. These include cognitive benefits, increased productivity,
reduced errors, and greater satisfaction. We believe these benefits
to individuals often carry over into collaborative situations. Research

376

on groups and teams, however, is much newer. Early results are by and
large very positive, but also indicate that it is very important that surface
applications be carefully designed. For example, to increase situation
awareness in contexts where groups are collaborating loosely, the research
shows that it is very important to reduce the amount of information that
is shared to no more than what is required. Other research indicates the
positioning and arrangement of displays can impact collaboration. In
mixed-display environments the research shows that it would be important
to be clear about the most important objectives of the collaboration so that
choices about display devices and functionality can be made with these
considerations in mind.

Understanding analysis work is not easy. Designers and developers of
tools often have undeclared assumptions about what analysis work is, and
these assumptions can easily become embedded in the tools, resulting in
a rupture between the work at hand and the tools to accomplish the work.
Theories have been applied to aid understanding of individual analysis
work, primarily based on understanding cognition. However, increasing
amounts of data and larger and more complex analyses are emphasize
the need for collaborative analysis. Collaborative artifact-mediated work
can be understood from a variety of theoretical perspectives. In particular,
we reviewed Distributed Cognition, Evolutionary Psychology, Attention
mechanisms, Group situation awareness, and Cultural-Historical Activity
Theory. However, collaborative work, such as complex collaborative work
in specialized domains, can be challenging to understand and predict,
particularly where new technology presents unfamiliar opportunities.

With respect to software architecture and development there is and will
continue to be some turbulence as technology standards and design
best practices emerge and become established. It is very important for
designers to understand this, as the challenges for developers are much
greater than those long understood relating to WIMP (windows, icons,
menus and pointer) interfaces. Diversity of toolkits and libraries may
make cross-platform development problematic until the advantages of
interoperability influence the market. Similarly, heterogeneity of data
sources and formats may present challenges. One lingering issue is that
few multi-touch surfaces have the means to identify the source of gestures
when several collaborators are interacting with a single screen. However, the
novel ubiquity and low cost of tablets and smartphones offers a excellent
opportunity to provide the identity of collaborators in mixed-surface
environments, as well as additional modes of interaction beyond touch.
Further, tablets and smartphones as additional devices for collaboration
can offer opportunities for private exploration, offline data manipulation
and preparation, and interactions requiring personalization or authority.
Some technologies have already dealt with multiplicity and diversity at the
infrastructural level, particularly web-based frameworks, and seem to be
a good starting point for collaborating across multiple devices. However,
there remain differences in how gestures are shared with browsers within

377

each of the main handheld operating systems, and so it may be worth
designing for a mix of browser-based and native code. Moreover, there
are also deeper issues. The challenge of sharing application state across
multiple devices gives rise to an important question of the identity and
“ownership” of objects. It is important to draw appropriate distinctions
between actual objects and inferred or proxy objects. Mutability (the ability
of objects to be changed) of shared objects must follow logic that meets
mutually shared goals of participants.

Our survey left us optimistic that large surfaces and mixed-display
environments seem well poised to support co-located collaborative analysis
work. However, it was clear that design for surface applications in the
analysis domain requires a system perspective. Surface computing is only as
useful as its application software, and applications for collaborative analysis
work need careful study of the domain, and carefully designed interfaces
and software. Further, surface computing environments need appropriate
accommodation and infrastructure, which also needs to be designed. In this
context it is important to design with an eye to end-user interaction, end-
user experiences, and the broader environment, which would include team
interactions and the physical aspects of the workplace.

Field Studies of Security Analysts at Work
The next step in our research program was to conduct field studies.
Especially in the domain of security analysis, access to professionals can be
very difficult to obtain, and our partnerships with industry and government
organizations were critical.

We conducted a number of studies in two related domains. In a first set of
studies, we carried out observations and interviews of operations centres.
In this set of studies, there were 7 sites involved, in a variety of industry and
government contexts from financial transaction processing to healthcare
support, each involving many hours and days of observations, and interviews
across a range of workers and stakeholders. Our analysis of the data used
Grounded Theory, and the results showed new patterns of work that have
evolved similarly across the workplaces we studied, offering new insight
about how these workplaces might be better supported with technology.

In a second set of studies, we focused on analyst teams conducting in-
depth projects to explore specific issues of interest. Our main study in
this work involved a team of 10 professional analysts over a 4 day project.
The project itself was a proxy based on open data, rather than on real and
therefore sensitive data, but was designed by one of the senior analysis as
representative of their real work. Our analysis of the dated used Culture-
Historical Activity Theory, especially the work of Engeström on collaborative
work Engeström (2000; Engestrom, 1992).

We will elaborate here more on the second set of studies, because of the
impact they had on later stages of our research. Our study found that in the

378

early stages of the analysis process, the analysts collaborated closely. Later
on, despite them working on the same general topic, and using the same
data set, we principally saw work done side-by-side, but independently.
We illustrate this in Figure 1, using phases of collaboration based on
Engeström’s work.

The most common stronger form of collaboration we saw later was when one
analyst requested technical help from another. Interestingly an exception to
the pattern occurred when one analyst produced a large poster showing
results of her work, whereupon others were keen to comment and fi nd
connections to their own work. Around the same stage of the process,
we observed one analyst applying a structured analysis technique called
“Analyses of Competing Hypotheses” (ACH). This is a technique developed
by Heurer, and supported by software. The main idea is that an analyst
considers several alternative hypotheses that might explain a set of evidence.
They assess the data for credibility, relevance, and then consistency with
each hypothesis. These factors are then used to build a mathematical model
which facilitates identifi cation of anomalies and refl ection.

Figure 1. The process of collaboration across time. Solid lines show steps in the
analysts’ process. Dashed vertical lines show days. Note the absence of refl ective

communication in step 5, selecting & analyzing issues. Source: Brown et al. Brown,
Wilson, and Biddle (2014).

Our analysis of the data, both observations and interviews, led to a number
of interesting fi ndings. One relates to “Process Productivity”. As noted
above, analysts collaborated more in early stages, and much less so later
on. We observed that the early stages were done with whiteboards, posters,
and brainstorming, where collaboration was explicitly supported. In the
later stages there was much less support, and we felt that better support
would facilitate and encourage more collaboration. Another fi nding related
to “Process Outcomes”. This was related to the fi rst fi nding, but we also
realized that with only low levels of collaboration, the process involved
little cross-checking, discussion of coverage, and comparison of results. We
speculated that better support for collaboration would not only improve the

379

productivity of the team, but also the quality of their outcomes. Finally, we
identified possibilities for better “Learning within the Process”. In activity
theory it is well-established that important learning occurs in cycles of
externalization and internalization as team members interact. In the activity
we observed, more support could have been put in place to increase
the likelihood of individual and team benefits, two secondary outcomes
of strong collaborative practice. In the collaborative event we observed,
very few team benefits ensued except when team members shared and
reflected on their techniques during their presentations at the end of the
project. There were also minimal individual benefits (although a few analysts
learned new tools on their own, individuals seldom explicitly learned from
each other).

Throughout the study, we had identified use of all kinds of surface-like
artifacts, including whiteboards, posters, and notebooks, and well as certain
software applications. Our conclusions was that there were important
opportunities for surface computing to improve the collaborative analysis
process. In particular, we felt that application software for large touch-
surfaces might well support analysis techniques used later in the process,
such as ACH. This kind of support might thus improve Process Productivity,
Process Outcomes, and Learning within the Process.

ACH Walkthrough: Software to Support Security Analysis
In this section we report on the design and implementation of a surface
application to support co-located security analysis. The field study of
a team of security analysts suggested that the “Analysis of Competing
Hypotheses” process (ACH) would benefit from collaborative support
because the consideration and judgement would both be assisted by
team discussion. We found calls for increased collaboration by authorities
in the intelligence analysis world. Heuer and Pherson suggest that their
collection of structured methods Heuer Jr. and Pherson (2010) can support
collaboration and reduce cognitive bias. Hackman Hackman (2011) concurs
and emphasizes that collaboration both improves outcomes and contributes
to the development of individual and team skills.

We reviewed other versions of ACH software, namely the version developed
for individual analysts at PARC Palo Alto Research Center (2010), and two
versions designed for collaboration, namely Globalytica Think Suite’s Team
ACH Globalytica (n.d.), and Open Source ACH Burton (n.d.). We created
extensive requirements for a collaborative version of ACH using surface
technologies. The main requirements were that:

1. A collaborative version of ACH should enable part of a larger
process where analysts alternate between individual work on an ACH
and collaborative work on an ACH;

2. Analysts should be able to easily view evidence documents while
working on an ACH analysis, and we speculated that a mixed-display
environment would support this best;

380

3. Collaborative ACH work should be enabled by a walkthrough
process whereby members of the team take on roles that would
strengthen the analysis, while they walked through all aspects of the
analysis and checked or extended its content.

We focused on requirement 3. We saw the walkthrough support as an
important part of the tool, given evidence that a fair number of users were
new to ACH. Our requirements also introduced both a new collaborative
practice as well as a surface application. Together these would aim to
improve an ACH analysis by enabling face-to-face discussions about the
attributes of the analysis, e.g., its completeness, its correctness, and so on.
Our application software, “ACH Walkthrough” accomplishes all these goals
as a functional prototype. Figure 2 shows the software in use. The data
set we use to illustrate the software is from publicly available material to
investigate the collapse of ENRON Corporation Contributors (2011).

Figure 2. ACH Walkthrough in use: Running with synchronized data on a large
multi-touch screen, on a laptop computer, and on a tablet.

While ACH Walkthrough can be used for ACH analysis generally, we especially
intend for it to be used for a collaborative review, where a small team of
analysts work together. In particular, we suggest an approach similar to that
suggested by Wharton et al. called the “Cognitive Walkthrough”Wharton
et al. (1992), where a team walks through steps, discussing and executing
each step together, each team member contributing from their perspective.
Recall that in our fi eld study, we saw a need for refl ective communication.
We suggest that our walkthrough technique will provide strong support

381

for reflective communication. In particular, when reflecting, analysts should
discuss the overall direction of the work, the quality of the work, and the
methods they are using to achieve their common goal.

As well as a collaborative review, we suggest that ACH analysis involves
some work best done by analysts working independently. For example, this
might be most appropriate for searching through documents and identifying
evidence, and even for many initial assessments of credibility, relevance,
and consistency with hypotheses. Accordingly, we suggest that the best
overall strategy for ACH is to alternate between independent work and
collaborative reviews facilitated by ACH Walkthrough. The software allows
analysis data to be transfered back and forth with spreadsheets.

The collaborative walkthrough is structured into a series of steps, where
each is a step in an ACH analysis, together with discussion relevant to that
step. To increase the value of the discussion, we suggest that team members
adopt roles. For example, one analyst could play the role of a particular
expert or organization, and represent that perspective in the discussion.
This facilitates a diversity of perspectives in the discussion, and increases
the possibility that critical issues will be identified. Heuer Jr. and Pherson
(2010) discuss the advantages of role-play in intelligence analysis, along
with related techniques such as devil’s advocacy and “red team” analysis.

In the walkthrough, our multiple device architecture also supports multiple
perspectives on the data. As illustrated in Figure 2, several devices can be
used simultaneously with different views (each view is on a different ‘tab’
in a traditional tabbed display), and any changes made to the data are
instantly synchronized. It would be possible, for example, to have two large
touch displays, so that one could be used to consider consistency ratings
(explained below), and the other could be used to browse related evidence
documents. At the same time, individual analysts could check other tabs on
the analysis using tablets or smartphones.

UI Design
ACH Walkthrough is a client-server web application, and it requires login
with a userid and password on a project basis. Within a project, the software
supports many ACH analyses, each with hypotheses, evidence items, and
the scoring of these following the model of Heuer. The UI presents several
tabs, where each tab supports one functional aspect of the ACH process.
We felt that a tabbed design was consistent with Heuer’s step-wise process
whereby the user’s attention is deliberately tunneled through a structured
process.

In addition to the basics of ACH Analysis, the software provides several
innovative features to leverage surface computing to support collaboration.
These include large-scale touch controls, suitable for small groups,
some innovative touch controls we call “fretboards”, and a visualization
technique called “parallel coordinates” applied to ACH. We also provide

382

“Walkthrough” facilitation to help groups systematically review an ACH
analysis. Finally, we use an innovative multi-device approach which allows
several devices to be used simultaneously.

Fretboards. In ACH, there are several steps that involve entry of a quantitative
score: credibility and relevance of evidence items, and consistency of
evidence with hypotheses. Instead of using numeric entry, we designed a
new touch control, the Fretboard. The name refers to the fi ngerboard on a
stringed instrument, with lines that mark positions for certain musical notes.
Our fretboards allow touch and drag interaction to position an indicator,
showing the appropriate quantity. This makes the entry highly visible to the
group, and allows spatial reasoning (see Figures 3 and 4).

Figure 3.

Figure 4.

383

Walkthough Advice. In our fi eld study, we identifi ed a need to better
facilitate strong collaborative activities such as those involved in joint
review. To support this, we leverage ideas from a kind of software inspection
technique called the “Cognitive Walkthrough”Wharton et al. (1992), hence
the name of our tool being ACH Walkthough. The technique involves
members of the group selecting roles to play in the review, and then the
group stepping through the analysis together discussing each step. This
supports a diversity of ideas, and avoids “groupthink”. To support this, our
tool has “walkthrough notes” that appear and give guidance, as seen in
Figure 4.

Parallel Coordinates Visualization. In our fi eld study and in later exploration of
ACH analysis, we found that people wanted to consider the overall patterns
in rating evidence for credibility and relevance, and in scoring of hypotheses
for consistency. To support this in our tool, we added a visualization of the
ACH analysis using the visual formalism known as a “Parallel Coordinates”.
We considered alternatives Wilson, Brown, and Biddle (2014), but settled
on this visualization for its fi t to task. Parallel Coordinates is an established
visualization techniqueInselberg and Dimsdale (1990) to aid exploration
of diverse data, and the technique has been advocated especially in the
context of cyber-security Conti (2007). See Figure 5 for an example.

Figure 5.

Multiple Devices. One important collaborative characteristic in our software
does not involve any specifi c element in the UI. By leveraging Meteor’s
automatic synchronization of data across connected clients, multiple
screens/users are updated in near real-time, as illustrated in Figure 5. This
means that, at a meeting, several screens can be used for the same ACH
analysis, where changes made on any device are refl ected on them all.

384

Multiple large screens may be used, or small tablets. This facilitates parallel
work in a collaborative context.

Software Implementation
The web-based approach was taken to enable deployment across many
platforms with suffi ciently powerful and standards-compliant web browsers,
and without any need for complex software installation. As with most web
applications, the overall system depends on a central server, with a certain
amount of code loaded onto the browser (client) while the software is
running. The ACH-W software relies, however, on processing that occurs
on both the server and the client. This client application is delivered and
updated without interruption or the need for client-side installation. In
many cases the server can even be modifi ed and restarted without the client
application losing its place. This approach enables many useful features,
such as no data being stored on the client machine when the program
is not in use, and the ability for simultaneous use of the software for the
same analysis by different devices. The software is written primarily in the
JavaScript programming language, using standards compliant language
software running in both servers and clients. We use several important
external but open-source libraries in our implementation.

Figure 6. Multiple Device Flow: In ACH Walkthrough, any number of devices
of various kinds can be used to work on the analysis, and to make changes

simultaneously and independently. The changes fl ow to the server, and thence to
any other devices working on the same analysis.

Evaluation
For our evaluation of Ach Walkthrough we had access to two vital resources.
The fi rst resource consisted of senior members of the group from the fi eld
study (‘the client’), and the second resource was a panel of professors at an
American university (‘the demo panel’) for whom the client requested we
give an extended hands-on demo. Both groups provided extensive and
helpful feedback.

One set of issues identifi ed concerned the visualization elements in ACH

385

Walkthrough, especially the parallel coordinates display, and the interaction
afforded by “brushing” on the axes.

Figure 7 shows the fi rst version of a plot for ACH-W, and an important issue
should be immediately apparent. The problem can be seen when examining
the number of lines between the fi rst and second axes (left to right) and the
apparent loss of detail as lines in subsequent gaps overlap. This problem
results from the fact that the data points are not fl oating point values but
instead are categorical (the fi rst axis) and ordinal (the remaining axes). This
loss of information can be corrected by using curved lines, as shown in
Figure 7.

Figure 7. ACH-W Parallel Coordinates showing improvement with curves.

Brushing supports a surprising range of interaction tasks, especially as users
become familiar with the meaning of the graph’s dimensions. Users new to
parallel coordinates graphs might at fi rst be drawn to visual clusters and
reinforcing trends across the display, and indeed in many domains this
is a strength of parallel coordinates in general. In the particular case of
analysis work like ACH, the real power comes from drawing one’s attention
to individual evidence items that fall within meaningful regions of the
graph and then taking the time to consider one’s evaluations from fresh
perspectives.

Interaction with parallel coordinates supports this kind of diagnostic
reasoning by making it easy to select items that help rule out a given
hypothesis. The user can create a brush that selects for ratings of inconsistent
or very inconsistent along a particular hypothesis axis and then draw their
attention to the evidence associated with only the highlighted lines. If they
had previously defi ned brushes for high credibility and relevance, they
would quickly fi nd evidence items requiring the greatest consideration.

386

Our informal usability sessions revealed opportunities for refi nements
of interactive features. Our internal testing using brushing and parallel
coordinates had shown it offered powerful analytic value, but in user testing
we learned that it does depend on some prior awareness of the brushing as
well as a certain level of patience and attention to detail. We had assumed
that most users would have encountered interactive displays in web forms,
but for several users (particularly those new to parallel coordinates), the
availability of brushing was not immediately obvious. It may have gone
against their expectations if they assumed that the visualization was merely
a static aggregation of data.

Without cues from experienced users, our testers did not attempt to apply
any brushes. In our current implementation of ACH-W there aren’t any
obvious interaction cues for newcomers. In fact there is only one type of
discoverable affordance and it is offered to mouse users when hovering the
pointer over an axis. Unfortunately this feature assumed that hovering could
even take place. Users of touch interfaces lack the ability to hover, and so
they miss out on interaction cues altogether.

This issue became apparent through a usability test where the participant was
helpfully thinking aloud and found himself stuck on one of the walkthrough
steps. It was only the novelty of the technique that caused a problem. Once
he was shown the availability of the brush feature, its meaning was readily
apparent. Even when users understood brushing, they did not immediately
grasp its ability to help seek evidence that could disprove their favourite
hypothesis, a task that is central to reducing cognitive bias. One possible
enhancement for fi rst-time users might be to introduce the feature of brush-
based fi ltering by offering a list of pre-set selections based on ACH-specifi c
tasks (e.g. fi lter irrelevant items, confi rm diagnostic items for hypothesis n,
then n+1, fi nd counter-evidence for hypothesis n, etc.) and then instruct the
user to walk through each of these presets. Also, the initial rendering of the
parallel coordinates graph could briefl y show animated selections on each
axis that quickly unfold until they encompass their full range and then leave
behind affordances for the user to adjust (see mockup in Figure 8).

Figure 8. Mockup of possible affordances.

387

A number of senior researchers from the demo panel expressed concerns
with the process of ACH in its present form. Their concerns fell into two
broad categories: psychological, especially whether ACH avoids cognitive
bias, and mathematical, about the nature of the model. These issues are
both intesting, as they do not relate specifically to our software, but we will
not elaboarate further here.

Comments on the software features of ACH-Walkthrough, however, are our
concern. One commenter was concerned that the two digits of precision
used in presenting scores against hypotheses in the Consistency Tab and
the Graphs Tab might mislead the user into perceiving a mathematical
distinction between closely ranked scores. The scores use a formula
developed with Heuer in the construction of the Xerox PARC version of
ACH, and we chose to reproduce this formula. Future versions will represent
a more coarse representation of score, or may eliminate the numeric score
entirely and instead use a visualization that fosters appropriate attention to
the similarity rather than the minor differences between hypotheses.

Similar to this concern was a comment on the immediate feedback of the
change in score provided while manipulating the ratings on the Consistency
tab. The reviewer believed the immediate feedback might actually
encourage confirmation bias rather than fight it. This was an interesting
concern that could form the basis of a future experimental review. Design
of such an experiment could prove difficult to achieve however, particularly
given the various other natural sources of confirmation bias present. It would
also be difficult to produce a baseline from which to establish the presence
of an effect. This was left as another potential avenue for future research.

Overall, our experience with ACH Walkthrough was positive, but the
interaction design and software are still at the stage of functional protoype.
The next steps should be a more controlled usability study, ideally
professional analysts, and a real problem suitable for analysis. At the same
time, our early feedback was often accompanied by suggestions for new
features. The most commonly requested features are in the list below. The
first two items on this list inspired the next project in our work, which we
present in the next section:

1. Versioning and merging of versions

2. Roll-back and play-back functions

3. Improved support for integration with external data sources

4. Bidirectional links between evidence and precisely tagged
supporting documentation

5. Voice input for hypotheses and evidence

6. Colour customization for rating system (from a colour-blind
evaluator)

388

Ra: Support for Application Interaction History
In the previous sections, we have described how our field study suggested
that collaborative security analysis would be assisted by large surface
tools, and we then presented such as tool, ACH Walkthrough. Both when
observing usage of ACH-W, and when seeking feedback, two additional
features seemed especially worthwhile exploring: Versioning and merging
of versions, and Roll-back and play-back functions. We therefore set out to
explore how such features might be provided. We developed an add-on
for web applications, such as ACH-W, to support interaction history, and
present our prototype in this section.

All users of complex software make decisions that they may later wish to
change. Software can support this need to revisit past decisions by keeping
past versions of the application’s state that the user can go back to. There
are several mechanisms for maintaining and presenting this history. Since
early in the history of desktop computing in the 1970s and 80s, most user
applications have provided users with an “undo” command to revert the
most recent change. But not all uses of “undo” occur because of mistakes.
Kirsh and Maglio (1994) o divide (non-erroneous) user interactions into two
categories: pragmatic actions are those that actually move the user closer
to their goal, and epistemic actions are those that help the user learn about
their situation, exploring to gather information that is either “hidden or hard
to compute mentally”. So interaction history systems should be designed to
support epistemic interaction as well as error recovery.

Touchscreens make epistemic interaction more compelling. Lee et al. (2012)
argue that touchscreens enable a kind of directness even more direct than the
Direct Manipulation described by Shneiderman (1981), since Shneiderman
was assuming the use of a mouse and keyboard. Large touchscreens also
enable new kinds of co-located collaboration possibilities J. Brown et al.
(2013). Sharing a touchscreen is much easier than sharing a keyboard and
mouse. Touch interfaces are changing the kind of software we make, and
the new types of applications need to support epistemic interaction.

Tools like ACH improve analysis work by reducing the impact of analysts’
cognitive biases. ACH in particular is meant to reduce confirmation bias,
where analysts will unknowingly focus on the evidence that supports their
pet hypotheses rather than evaluating all evidence fairly. Another cognitive
process that can interfere with effective analysis is satisficing Simon (1956),
in which an analyst will stop when they have reached an answer that seems
“good enough”. On its own, this is rational and acceptable as long as the
threshold is set right. The problem is that software may impose additional
costs to further exploration – at worst, further exploration requires starting
all over again – and that lowers the “good enough” threshold. This is related
to the problem of premature commitment from the Cognitive Dimensions
of Notations framework Blackwell and Green (2003). If you have reached
a solution but want to try something else, you must decide whether it’s
worth the effort to just get back what you had if the “else” isn’t any better.

389

Without a system for storing interaction history, the user is constrained to
repeat the steps to achieve the old solution, or else execute the inverse of
all actions taken since then. This may be a signifi cant cost to exploration.

Figure 9. A study participant using our prototype software Ra (the dark blue
sidebar) with an interactive data analysis tool.

We wanted to develop a system to provide users with access to all their
historical interaction states, including those that would be discarded by a
traditional stack-model undo system. Such a system should encourage more
epistemic interaction by allowing users to return to known-good states after
exploring and reduce premature commitment and the urge to satisfi ce by
freeing users from the risk of losing good work while investigating other
options. We want to make software tools better support data analysis and
other kinds of nonlinear tasks that are hard to automate; we want risk-free
exploration.

In furtherance of these goals, we developed a prototype library called Ra,
pictured in Figure 9.

Visualizing History
Software has many different methods for handling interaction history and
exposing it to users. We reviewed a large number of approaches, but the
ones that seemed most general were those from software source code
version management. Some modern version control software such as Git
and Mercurial store the history of a project as a directed acyclic graph
(DAG). Tools for working with these systems will often display the history
as a DAG as well. In software projects, the structure is a DAG because
most work ends up in the fi nal product. When developers work in parallel,
they are usually not working on alternatives; they will merge both lines of
development together.

390

In Ra, we represent the history as a tree. (This is also the data structure
used internally.) We expected that the exploratory behaviour we want to
encourage would result in mostly dead ends, or multiple different results
for presentation or comparison, rather than some unification of most of
the work. Merges seem like a desirable feature in some cases, but their
usefulness may not be worth the extra complexity. It is unlikely that Ra could
perform merges automatically, and there is no obvious way for a user to
direct the merge of two snapshots of application state. This is in contrast to
merging source code, which can often be done automatically, and manual
merges of source code requires understanding the code, whereas merging
application state would require understanding the (usually not human-
readable) representation of that state.

The tree visualization in the Ra sidebar is inspired by the visualizations for
version control systems, and the traditional visualization of trees in computer
science. New nodes are added below, and if necessary to the right of,
the parent node (which represents the state that happened immediately
beforehand). This also, happily, matches normal English reading order.

Implementation
The general technical goal is to capture snapshots of the running state of
a Web application, and then be able to load snapshots without too much
delay. There are several ways this could be accomplished, each with its own
drawbacks.

For ease of prototyping, we chose to implement Ra as a JavaScript library,
to be included in the Web application with some (but preferably minimal)
supporting application changes. We wanted Ra to be non-invasive enough
that it can be added to an existing application without restructuring the
whole thing.

The central part of keeping required changes to the host application
localized is the use of objects. The newly-finalized ECMAScript 2015
Language Specification (“ECMAScript 2015 Language Specification”
2015) (ECMAScript 6) introduces them, though prominent JavaScript
engines such as SpiderMonkey in Firefox Mozilla Developer Network (n.d.)
implemented versions specified in drafts of the specification well before the
final publication. A imitates an existing object, but it can intercept almost all
interaction with that object. In the specification (“ECMAScript 2015 Language
Specification” 2015), a object is defined as an “Exotic Object”, meaning
that it is not required to display normal JS object semantics. For example,
immediately after setting a property on a regular object, retrieving the same
property must return the previously stored value (unless an exception was
raised); objects are not required to act this way. The object has a special
handler function that can override the normal object semantics. Following
the same example, retrieving a property value as would call a function
provided when the proxy was created, and the expression would evaluate
to the return value of that function. The function can usually return any

391

value it chooses, although there are some more complicated edge cases
requiring the semantics of certain features such as non-writable properties
to be respected (“ECMAScript 2015 Language Specification” 2015; Mozilla
Develop Network, n.d.).

An application using Ra substitutes objects created by Ra for the objects
that hold its state. When all objects that hold state in the application
are actually objects managed by Ra, the application code continues to
interact with Ra implicitly when it uses those objects, yet all other code
can continue to use the objects as if they were the real state objects. This
allows us to update state objects on demand, wherever they may be inside
the application at the time, and whoever may have references to them.
From the perspective of the application code, when the user loads a saved
snapshot, the state objects immediately become the saved values, without
requiring the application to actually make any changes. This is accomplished
by setting all the traps in the to return the value from the current saved state
object instead of the original. If the application was already written in an
object-oriented style following the Model-View-Controller (MVC) pattern
Krasner, Pope, and others (1988), with state stored as properties of long-
lived objects, then the state objects do not have to be tracked through their
entire lifecycle; to support Ra, changes are needed only where state objects
are created. Additionally, since the “objects storing application state” that
Ra needs correspond to objects in the Model component of MVC, all the
state objects are already identified and ready to be replaced by proxies.

Our proxy-based approach corresponds very nicely to traditional MVC
or three-tiered application architectures, since the Model component
keeps the state objects isolated from the other code. However, the state
object requirements are impractical in some programming paradigms and
architectural styles (or lack thereof) used in JavaScript. Storing state in
the web application domain object model (DOM) is a common technique
that is problematic for Ra. Trying to recover the important state from the
DOM from Ra’s position would be complicated and error-prone at best.
Some applications keep state in closures, in variables local to a function
but available to any other functions that are lexically inside the function.
Programs written in the functional paradigm generally rely on this rather than
mutating objects. It is common to use closures to avoid adding properties
to the global object in top-level code, and some store state in variables in
that scope. There is also a well-known pattern for “private members” in
code trying to emulate Java-style object-oriented programming by using
closures to restrict access to variables, since variables cannot be updated
from outside their scope.

We found that the parallel coordinates application we used had several
of these problems. It uses the D3 framework Bostock, Ogievetsky, and
Heer (2011), which maintains listeners on the state objects in the model
component, and the code was written in a partly functional style with
significant state variables in closures. Restructuring the application to meet

392

Ra’s requirements would have been a large undertaking comparable to
rewriting the application.

We developed a mediation mechanism to allow an application to use
Ra without signifi cant restructuring when it can’t meet the state object
requirements. It puts more responsibility for managing state on the
application, so this may be of limited practical value in an application
with complex state. However, it was suffi cient for the parallel coordinates
application. The Ra API is extended to include priests, which are special
objects provided by the application that act as interpreters between Ra
and the application state. Objects that store state but do not meet Ra’s
requirements are still marked with a call to on creation, but a priest name can
be supplied as well, as in the call . Instead of returning an object wrapping,
this will return itself. Ra will then delegate responsibility for monitoring,
saving, and restoring that object to a priest registered with the given name.

Ra User Experience
The parallel coordinates application (showing the months Ottawa had
at least some snow and the temperature never dropped below zero – a
rare occurrence). The balloon popup for a node is showing the label and
timestamp. The user has already returned to that state and started a new
branch; the “Load this” button would let them do so again.

Figure 10. Ra divides the page to make room for a sidebar.

When Ra is part of a Web application, it adds a sidebar, shrinking the
available application space, as shown in Figure 10. Ra does not try to
intercept or manage user interaction with the application part, so aside
from being narrower, the application works exactly as it would without Ra.

As the user uses the application, Ra records the state of the application

393

when it changes. We call the recorded state a “snapshot”. These are shown
as nodes in the tree visualization in the sidebar, where each snapshot follows
from its parent in the tree (“time flows down”).

The user can return the application to a previous state from the sidebar.
Tapping or hovering with the mouse brings up a balloon popup for each
node, as shown in , from which the saved state can be loaded. The node
in the tree that represents the current application state is marked in yellow.
When the user returns to a previous state, they can still interact with the
application – making different decisions this time. Instead of replacing the
history from that point forward, as a traditional undo system would, Ra starts
a new branch in the tree, as shown in , so both timelines are available.

Ra can record states for different reasons, and these get different glyphs for
the nodes in the tree visualization. There are three types of nodes:

• Automatic snapshots are shown as small dots. They are all given the
same default label (“autosave”) because no semantic information about
the state is available. Ra creates them automatically when it detects that
the state has changed, though this is rate-limited to at most one per
second, and the other snapshot types supersede automatic snapshots.

• App-suggested snapshots are shown as bigger, brighter dots. The
application can tell Ra to create one of these snapshot when it is in a
state the user is likely to want to return to, which is why these nodes are
more prominent. The application provides the label for these snapshots.
This kind of snapshot depends on the support of the application, and
some applications (such as our simple maze) may not create any. Our
parallel coordinates application uses these to mark the creation of new
brushes (selections).

• Starred snapshots are shown as stars. They are created explicitly
by the user. They may have a label set, also provided by the user. To
make a starred snapshot, the user enters the label in the textbox in the
sidebar, then presses the “Save” button. Note that in previous versions
of Ra, starred snapshots had the same appearance as app-suggested
snapshots.

We performed a usability evaluation in which participants used a simple
puzzle and an interactive data analysis tool with Ra. Our experience
implementing Ra and our observations from the study revealed several
important themes. Perhaps most interestingly, we observed three kinds of
history tasks. This categorization is not directly about the user’s intent, for
which there would surely be more than three categories, but the relationship
between the state the user was in (old) and the state to which the user went
(new).

Correcting Mistakes
In the “oops-undo” case, the user has made a mistake recently, or tried to
perform an action but the computer did something unexpected. The old

394

state was clearly wrong; the user does not expect to need it again, and
perhaps it should be hidden from view. This is the case that traditional undo
was designed for, and it is reasonably well-suited to it.

Trying Alternatives
In the “undo-retry” case, the user wants to try some alternative, usually
starting from further back in history than the oops-undo case, or from a
parallel timeline. New work will be based on the new state, but the user may
not be certain that the old state should be discarded; the old state may still
be useful.

Ra was intended to support this task in particular. Traditional undo
mechanisms force the user to give up one branch to work on another, which
requires the user to commit to a decision before they see the result; they
may have to resort to manual version control (saving the file separately for
each experiment) or make a decision with incomplete information. Ra allows
the user to keep any number of parallel alternatives without the extra costs
of saving and managing alternatives in files.

Comparing Versions
In the “undo-review-redo” case, the user just wants to look at a previous
version of their work. It might be to compare two alternatives, or to copy
a particular piece of a previous solution, or even to remind themselves of
what not to do. The old state is still the working copy where new editing
work will happen; the new state is not something the user wants to keep.

Using traditional undo for this task is particularly dangerous because any
accidental edit will discard the redo stack, leaving the user in a state they
intended to abandon. Ra happens to support it better, since all versions
are accessible, but there are features that could improve the experience,
such as some way to keep track of the current working branch separately
from the version being viewed. We did not think of this task when initially
designing Ra, so it is an interesting outcome of the study that participants
did this anyway.

Reviewing sequences of past states without editing them may also be able
to help other people understand the final state. For example, Farah and
Lethbridge Farah and Lethbridge (2007) developed a linear timeline for
reviewing the development of software engineering models. In the field
of intelligence analysis, the system could be used for a kind of traceability,
allowing analysts to review the decisions that led them to a conclusion. Ra
could emphasize this capability by making it easy to explore the path from
a state to the root of the tree – that is, the work that went into a selected
state, ignoring parallel timelines.

Strata: Web Application Annotation
In several steps of our research, we have observed professionals in co-
located collaborative security analysis work. One common kind of behaviour

395

is annotation, whether of documents, or on whiteboard diagrams. Where an
application was displayed on a large screen, whether television or projection,
it was common to see people using paper or whiteboards to make sketch
duplications of key parts, and then annotate these. Often users tended to
point and gesture to elements on the screen, as if they were marking up
the content on the display itself. We therefore decided to explore explicit
support for this behaviour, and developed an add-on for web applications
to support annotation and easy screen capture. This would allow the users
collaborating over the display to annotate the web application which they
are interacting with, in addition to saving and retrieving previously saved
annotations. In this paper we present the technology choices and interaction
design of our prototype ,``Strata”, see Figure 11.

Figure 11. Co-located users collaborating over a large touchscreen display using
Strata to mark up a sample “car fi nder” web application.

The value of markup on documents has been included in various contexts
including in modern PDF reader applications such as Adobe’s Acrobat and
Apple’s Preview which provide users with annotation capabilities on PDF
documents. Annotation capabilities have also been included in the web
browser by Microsoft’s Edge browser in their Windows 10 operating system,
which provides markup tools for web pages such free hand drawing,
highlighting, and text based notes. There are also various web browser
extensions which allow for marking up webpages, such as the Hypothesis
extension Hypothes.is (n.d.).

Annotations have also been the subject of various studies in academia.
Denoue and Vignollet proposed a very simple implementation by storing

396

annotations on the client using extended URLs and avoiding the server
all together (Denoue and Vignollet, 2002). Alternatively, Sodhi Chatti
describes a ``transparent white board” overlay approach to creating and
storing annotations; the annotations would be formed so that it is self-
contained which would therefore allow the annotations to be stored
anywhere (either server or client) Chatti et al. (2006). Finally, Beryl Plimmer
explores putting the web page into an iframe and then overlaying Adobe
Flash based annotations on top of the frame and tagging annotations with
metadata associated with the user. The annotations could then be stored in
a database and thus retrieved at anytime and even be shared with various
users Plimmer et al. (2010).

In summary, earlier work focused largely on the value of annotations
on documents using a mouse driven interface using regular computer
monitors, our focus is on the value of annotations on web applications (and
not documents) as a mechanism for facilitating collaboration amongst users
over large touchscreen based displays. The importance of annotations
for interactive systems has long been suggested by Thomas Green as
“secondary notation” in his identification of “cognitive dimensions” of
complex systems Blackwell et al. (2001).

Our goal was to implement a JavaScript based add-on that can be included
in any web application to provide users with mark up capabilities. Therefore
when we developed the prototype of the Strata system, we decided that
the project should meet the following requirements:

1. The system should enable creating annotations on top of web
applications.

2. Annotations generated should not obstruct the content on the
display. The content should remain accessible and manipulatable even
if there is markup overlaid on top.

3. Both touch and mouse based input should be supported by the
system, since there may be times when users would prefer using a
mouse even on a touchscreen computer.

4. Multitouch drawing capabilities and gestures must be included in
order to enable multi-user collaboration.

5. The system should leverage multitouch gestures in order to ease
usability and facilitate exploratory interaction within the system.

6. The system should be able to save and load annotations so that
users can revisit them at a later time or share them with other users.

7. The system should integrate seamlessly with a web application
without requiring several re-writes by a web application creator wishing
to include the system.

Strata was designed as a library that can be added on to any web
applications, rather than creating an extension which requires users to

397

modify their web browser. This allows web application developers to easily
integrate the Strata system with any existing web application in order to
gain access to markup capabilities and enhance the collaborative aspect of
their web application.

Initial prototypes of Strata were developed using HTML Canvas. However,
this technology was abandoned in favour of Standard Vector Graphics (SVG),
because the HTML5 Canvas element would overlay over the content and
would thus prevent the user from interacting with the elements underneath.
Our design is that users can toggle between interacting with the application
itself, or with the annotation as a “layer” (hence the name “Strata”).

Since the system is intended to work on large touchscreen devices, the
system should support a multitude of features including multi-touch input
and gesture recognition. Strata is designed with both of those features in
mind, it leverages the Interact.js library which provides unified mouse and
touch events thus allowing for development on both touch screens and
mouse based personal computers. In order to support multitouch Strata
leverages Interact.js’s (Adeyemi, n.d.) “pointerIy” attribute to assign a newly
created pencil object to each finger thereby mapping each pencil object to
a finger therefore allowing for drawing using multiple fingers. Multitouch
is essential not only because a single user would expect it but also since
the system is intended to be used on large touch screens, it would be
be intended to be used by multiple users and would therefore require
multitouch to foster collaboration between the users interacting with the
system. Another advantage of using Interact.js is because it provides
support for gestures; any object with that matching class would recognize
gestures including pinching to resize an element and a rotate gesture.
Initially the system was designed with explicit state switching in mind where
a user would have to switch between drawing and gesturing which was a
detriment to usability, Strata was then redesign to support implicit state
switching whereby tapping an element would switch to a gesture mode
and upon completion drawing more would resume. This greatly improved
the usability of the software and allowed for a much more natural and
streamlined user interaction. By implementing both of these features, the
system encourages explanatory interaction on the part of the user which is
complemented by the exploratory nature of large touchscreen displays and
should thus facilitate collaboration and user engagement.

To demonstrate and conduct preliminary usability testing, included the add-
on on a car finder web application, which allows users to explore choices
for cars based on economy, power, etc. This application uses parallel
coordinates visualizations (Inselberg, 1997) and we use the implemented
based on the D3 visualization library (Heer, Bostock, and Ogievetsky,
2010; Bostock (n.d.)). This is one of the primary design elements in our
ACH Walkthrough application, introduced above. This visualization shows
data attributes on several parallel axes and allows individual elements to be
selected by “brushing” on the axes.

398

The application interface is show in Figure 12, where the car fi nder is in
the main part of the screen and the Strata add-on interface is shown as
a tool bar across the top. The toolbar contains the pencil tool, options
for stroke and colour Document annotation tools such as those found in
PDF viewers provide a similar interface for interaction. Users can begin
interacting with the strata system by enabling drawing mode by pressing
the pencil icon. Once the drawing mode is triggered, the web application
will no longer become accessible so that the users can mark up the web
application without fear of accidentally selecting text or interacting with the
web application. The web application’s functionality can be resumed once
the drawing mode is disabled.

Once in drawing mode, the user has various options on the toolbar including
clearing the paper, setting the colour and the stroke size options for the
freehand drawing ̀ `pencil” tool and a rectangle canned shape option. These
options can also be changed at any time by using context menu options.

Figure 12. Strata annotations have been used to mark up the sample web
application using freehand ``pencil” drawings and a canned rectangle shape.

The strata add-on provides users with various ways of annotating web

399

applications they have access to both free hand drawings as well as canned
shapes including arrows, rectangles and ellipses. A context menu is used
to create new shapes as demonstrated, since it is a contextual menu it
changes the options based on where it was triggered, triggering the context
menu over an element will bring up the styling options for that particular
element, otherwise triggering it over the web application will bring up
element creation options which allows users to add rectangles, circles. In
order to support both touch and mouse for triggering the context menu the
context menu click (typically a right click) brings up the contextual menu,
alternatively the menu can be brought up by using a ̀ `hold” gesture in order
to support systems without a mouse.

The Strata toolbar presents users with various options, including saving
the annotations as a JSON file once they are done annotating the web
application, the resulting JSON file can then be loaded at any later time by
invoking the load function through the Strata toolbar or shared with other
users who can then load the annotations, view them and possibly add or
remove elements from them. The system also includes the ability to save a
screenshot of the annotations which can be invoked by clicking the camera
icon in the Strata toolbar, once the screenshot functionality is invoked a
screenshot of the web application (including any markup) will be taken and
sent to a private image gallery.

Future work on the project includes formal usability testing, and in
particular we need to do it in an ecologically valid context where we
have people collaborating on real work using the system. Moreover, the
possibility of semantic annotations should be explored, by which we mean
a mechanism that can allow applications to present hooks so that Strata can
do smart annotations using those hooks (delegating the markup to the web
application). Finally, we believe that it would be important to investigate the
value of a web extension based architecture in the future in order to be able
to utilize the strata overlay in any web application without the developers
having to include support themselves.

Discussion and Conclusion
In this chapter we have reviewed a number of our projects on surface
computing for security analysis. We began with a survey of related work,
and then conducted field studies. We developed ACH Walkthrough, a
surface computing application to support analysis work, and then two add-
ons, one to support interaction history, and another to support annotation.
This work was carried out over several years, and involved several projects
we did not address in detail here.

Reviewing the work as a whole, several themes stand out. One suggested
by our literature review, and confirmed in our field study, is simply that large
surfaces, whether whiteboards, posters, or large computer displays, really
do facilitate collaboration. Small surfaces are hard for multiple people to
see, and are perceived as personal, making joint use seem invasive.

400

A second theme is more specific to security analysis. The work involves
large amounts of data that is typically incomplete, unclear as to relevance,
and can even be intentionally deceptive. Yet making determinations and
recommendations must still be done, because security always involves
risk. Together, this has led to analysis processes that have several kinds
of filtering, assessment, and iteration, for example as described by Pirolli
and Card (2005). Our field study of professional analysts suggested that
this process would be improved in several ways by better collaboration,
for example using large surfaces. This is also consistent with results found
by Isenberg et al. (2010) in their study of students as doing intelligence
analysis. However, we also learned that it was unrealistic, and almost
certainly unhelpful, to expect analysts to work in close collaboration all the
time. Much of the work required intense focus and concentration, and was
best done alone for periods of time.

In our work developing and testing our surface computing tool for security
analysis, ACH Walkthrough, a cluster of themes emerged. One was the
importance of guided collaboration, where our walkthrough steps helped
users follow the ACH process. Another was that it became clear that
the work involved ``epistemic `` interaction. This has been identified by
Kirsch and Maglio (1994) as supporting not actions intended have direct
consequences, but rather speculative actions, done to explore possibilities.
We realized this was the principle underlying our fretboards and parallel
coordinates visualizations. At the same time, we appreciated the need for
analysts to take away results, work alone, and bring back new ideas.

All this led to identification of new ways to better support this kind of work.
Interaction history support, such as provided by Ra, can help epistemic
interaction because it frees the analysts to explore alternative, while
allowing easy return to previous states. Annotation of application states
can be supported by software like Strata, which allows collaboration around
application software, while making notes on the results for later review.

In summary, we found that surface computing has a strong relevance for
security analysis, especially in how it can support collaborative epistemic
interaction, and this can be improved by support for guidance, interaction
history, and annotation. These are promising new directions for software
design.

401

402

BIOGRAPHIES

403

TULIO DE SOUZA ALCANTARA is a UX developer for Computer Modelling Group
Ltd. since 2013 and has been involved with software development since 2002. He
completed his MSc in Computer Science at the University of Calgary, under the
supervision of Dr. Frank Maurer in 2013. During his MSc, he specialized in human-
computer interaction and prototyping of touch based applications.

BON ADRIEL ASENIERO is currently a PhD student at the Interactions Lab (iLab),
University of Calgary. He is a member of the Innovations in Visualization Lab (InnoVis),
supervised by Dr. Sheelagh Carpendale and Dr. Anthony Tang. His research topic
is in the intersection of Information Visualization (InfoVis), Personal Informatics, and
Human–Computer Interaction (HCI). He has also done research in augmented reality
under Dr. Ehud Sharlin in the past. He has received a Bachelor’s degree in Computer
Science: Human–Computer Interaction, and a Master’s degree in Computer Science:
Information Visualization.

ALAA AZAZI is a graduate research assistant at the Agile Surface Engineering
Group at the University of Calgary. He received his BSc in Computer Science &
General Mathematics in 2014, and was awarded the Alberta Innovates Graduate
Student Scholarship to join the MSc program at the University of Calgary. His work
spans areas of ubiquitous computing, human-computer interaction, and software
engineering.

PIERRE BASTIANELLI is an Interaction Designer at VizworX, Inc., a company that
was born off the ASE Lab and some of the SurfNet technologies. Pierre initially
graduated as a Computer Science Engineer with an MSc in Human Computer
Interaction from the National Civil Aviation University (ENAC) in Toulouse, France.
He then joined the ASE lab for half a year as part of the LEIF initiative, and wrote
his Master’s thesis there. After that, he worked at Ivrnet, Inc., where the TableNOC
project was being piloted, and did extensive design and prototyping on the matter,
and submitted a related paper. At 3D-P and then VizworX, he then stayed close to
the tabletop, webapp and mapping technologies that are now an essential part of
his skillset.

GUILLAUME BESACIER is an Assistant Professor of Computer Science and
Information and Communication Sciences at Université Paris 8 Vincennes-Saint-
Denis (France), in the team Cybermedia, Interactions, Transdisciplinarity, Ubiquity
(Citu). He was a SurfNet Postdoctoral Fellow from 2011-2013 at the University of
Waterloo, where he managed the Surface Ghost projects discussed in the “Cross-
Device Content Transfer in Table-Centric Multi-Surface Environments” chapter. His
current research interests include augmented environments, connected objects, and
digital mediation of cultural heritage… around an interactive tabletop, of course.

ROBERT BIDDLE is a Professor in the School of Computer Science and Institute
of Cognitive Science at Carleton University in Ottawa, Canada. His research is in
Human-Computer Interaction and Software Design. His recent research projects are
on usable security, especially authentication and security decision-making, and on
large-scale multi-touch devices, especially environments for collaborative design
and visualization. Robert has Bachelors and Masters degrees in Mathematics and
Computer Science from the University of Waterloo, a PhD from the University of
Canterbury, and has diplomas in both childhood and adult education.

CHRISTOPHE BORTOLASO holds a Master’s in Human-Computer Interaction from
the University of Toulouse. During his PhD (also from the University of Toulouse),

404

his performed research in design methods for mixed reality systems, lead to an
installation in the Toulouse Museum of Natural History. He worked as a SurfNet-
sponsored post-doctoral fellow at Queen’s University, during which time he led
the development of the OrMiS mixed-surface environment for simulation-based
training. He served as demonstrations co-chair at the 2014 Interactive Tabletops
and Surfaces (ITS) conference.

JOHN BROSZ is the Research Data and Visualization Coordinator at the University of
Calgary’s Taylor Family Digital Library. In this capacity he manages the Visualization
Studio, a research space with a high-resolution wall display that supports researchers
from across campus. His past experience includes time as a post-doctoral researcher
supervised by Professor Sheelagh Carpendale, and a PhD, MSc, & BSc in Computer
Science (focusing on 3D Computer Graphics) at the University of Calgary. John’s
research interests include information visualization, multi-touch interfaces, large
displays, and 3D modeling and rendering.

DOUG BROWN is the Senior Synthetic Environment Integrator in the Army
Simulation Center in Kingston Ontario. He graduated from the University of Western
Ontario in 1981 with an HBSc in Computer Science. He then spent 15 years as
a Defence Scientist in Military Operational Research holding positions with the
Canadian Navy and the Canadian Army. He also had a posting as an Operational
Research Scientist at the SHAPE Technical Centre in The Hague. In 1996 he moved
to the then infant Joint Command and Staff Training Centre in Kingston Ontario
as the principle modeling and simulation expert. He has remained there over the
past 14 years. He has been responsible for the design, construction and execution
of synthetic environments for hundreds of Canadian Army and Canadian Forces
exercises. He has several publications to his credit.

JUDITH BROWN is a postdoctoral fellow in the School of Computer Science and
Institute of Cognitive Science at Carleton University in Ottawa, Canada. Her research
is in Human-Computer Interaction, and in particular collaboration and the practices
and tools that enable it. Her recent research projects have investigated the use of
large displays in various domains including digital Cardwalls for agile development
teams, incidence response teams in IT operations centres, collaborative analytic
work, and collaborative gesturing for pairs working with visualizations. Judith has a
PhD in Human-Computer Interaction/Psychology (Carleton University), a Masters in
Computer Science (Queen’s University) and undergraduate degrees in Psychology
and Statistics (Queen’s University).

SHEELAGH CARPENDALE is a Professor at the University of Calgary where she holds
a Canada Research Chair in Information Visualization and an NSERC/AITF/SMART
Industrial Research Chair in Interactive Technologies. She directs the Innovations in
Visualization (InnoVis) research group and founded the interdisciplinary graduate
group, Computational Media Design. Her research on information visualization,
large interactive displays, and new media art draws on her dual background in
Computer Science (BSc and PhD from Simon Fraser University) and Visual Arts
(Sheridan College, School of Design and Emily Carr, College of Art).

FRANK CENTO is currently completing a BSc in Mathematical Physics at the
University of Waterloo. He worked as an undergraduate research assistant in the
Collaborative Systems Laboratory in 2014 under the supervision of Dr. Stacey Scott
at the University of Waterloo as a SurfNet student researcher working on the Surface
Ghost Project described in the “Cross-Device Content Transfer in Table-Centric

405

Multi-Surface Environments” chapter.

EDWIN CHAN is a Master’s Candidate at the University of Calgary, supervised by
Dr. Frank Maurer. He did an internship with the NSERC SurfNet Strategic Network,
and completed his bachelor’s degree with a concentration in Human-Computer
Interaction. Currently he is researching the design and deployment of wearable
devices for field responders in the emergency response domain.

ANDY COCKBURN is a Professor of Computer Science at Canterbury University in
Christchurch, New Zealand. His research interests cover a wide range of topics in
Human-Computer Interaction, including input modeling, spatial memory, cognitive
biases, and interaction techniques.

CHRISTOPHER COLLINS is the Canada Research Chair in Linguistic Information
Visualization and an assistant professor of Computer Science at the University of
Ontario Institute of Technology (UOIT), where he leads the Vialab research group.
His work has been published in many venues including IEEE Transactions on
Visualization and Computer Graphics, and has been featured in popular media such
as the Toronto Star and the New York Times Magazine. Dr. Collins received his PhD
in Computer Science from the University of Toronto.

ZACHARY COOK was a SurfNet co-op intern from 2012-2013 and graduated
with a BSc (Hons.) in Computer Science from the University of Ontario Institute of
Technology in 2014.

KODY DILLMAN is an MSc student studying Computer Science at the University of
Calgary as a member of the Interactions Lab. He completed his BSc in Computer
Science with a concentration in Human-Computer Interaction (HCI) in 2014, and
has been a member of the RICELab (Rethinking Interaction, Collaboration and
Engagement Lab) research group since 2012. Kody became interested in HCI while
taking an undergraduate course on the topic, learning just how common bad design
is, and saw a challenge in creating usable systems to improve peoples’ lives. In his
free time, he enjoys video games, comic books, and board games, and has also
been known to play a musical instrument or two. Kody currently lives in Cochrane,
AB with his wife, Sarah, and their doggie daughter, Niko.

ANDRE DOUCETTE is Product Director at Push Interactions Inc. in Saskatoon,
Saskatchewan. He completed his PhD in the department of Computer Science at the
University of Saskatchewan in 2014. His main research interests involve interaction
design, visual design, multi-user systems, and mobile interaction.

SHAHBANO FAROOQ is a freelance software engineer and researcher with over
4 years of prior experience in industry developing and designing software. She
attained an MSc from University of Calgary. Her research interest is in Information
visualization design and collaboration.

KATHRIN M. GERLING is a Senior Lecturer in Computer Science at the University
of Lincoln, where she is part of the Interactive Technologies Lab (INT LAB) and the
Games Research Group. Her main research areas are human-computer interaction
and accessibility; her work examines interactive technologies with a purpose
besides entertainment. She is particularly interested in how interfaces can be made
accessible for audiences with special needs, and how interactive technologies can
be leveraged to support healthy lifestyles. She holds a PhD in Computer Science

406

from the University of Saskatchewan, Canada, and a Master’s degree in Cognitive
Science from the University of Duisburg-Essen, Germany. Before joining academia,
she worked on different projects in the games industry, and still enjoys thinking
about issues related to game usability and player experience.

YASER GHANAM is a software engineering academic and practitioner currently
working as a Project Leader at Schneider Electric - Canada. His experience and
interests span a number of areas including agile software development, project
management, and usability engineering. Dr. Ghanam holds a doctoral degree in
Software Engineering, a bachelor’s degree in Computer Engineering, and a minor in
Engineering Management.

NIPPUN GOYAL is currently completing an MASc in Systems Design Engineering
at the University of Waterloo. His research focuses on human-computer interaction,
interface design and information visualization. With passion in user-experience
design, he wishes to pursue his career as a user researcher and enhancing the world
around him. He is also a freelance photographer and enjoys travelling new places.

NICHOLAS GRAHAM is a Professor at the School of Computing at Queen’s
University. He performs research in the design and development of next-generation
digital games, with a focus on exergaming, simulation-based training games,
and digital tabletop games. Together with researchers at the Holland Bloorview
Kids Rehabilitation Hospital, he has developed the Liberi exergame that provides
opportunities for exercise and social interaction for children with CP. With the
Canadian Forces’ Army Simulation Centre, he developed the OrMiS interactive
tabletop that uses gaming technology to train military officers in command
positions. Graham has transferred technology, both to the public through open
source development initiatives, and directly to industry through the co-founding of
Namzak Labs Inc. He is a member and former chair of IFIP Working Group 2.7/13.4
on user interface engineering, and member of the steering committee of the ACM
SIGCHI Symposium on Play in Human-Computer Interaction. He has received five
best paper and honorable mention awards in the last six years.

SAUL GREENBERG is a Full Professor and Industrial Research Chair in the Department
of Computer Science at the University of Calgary. While he is a computer scientist
by training, the work by Saul and his talented students typifies the cross-discipline
aspects of Human Computer Interaction, Computer Supported Cooperative Work,
and Ubiquitous Computing. He and his crew are well known for their development
of toolkits, innovative system designs based on observations of social phenomenon,
articulation of design-oriented social science theories, and refinement of evaluation
methods. He is a Fellow of the ACM, received the CHCCS Achievement award,
and was elected to the ACM CHI Academy for his overall contributions to the
field of Human Computer Interaction. Together with Nicolai Marquardt, Sheelagh
Carpendale and Bill Buxton he is the co-author of ‘Sketching User Experiences:
The Workbook’ (Morgan-Kaufmann 2012) as well several other books on Human
Computer Interaction. http://saul.cpsc.ucalgary.ca

CARL GUTWIN is a Professor of Computer Science at the University of Saskatchewan.
His main research areas are Human-Computer Interaction and Computer-Supported
Cooperative Work, including interests in mobile-device interaction, performance
analysis and modeling, and spatial memory.

MARK HANCOCK is the director of the Touchlab at the University of Waterloo. He is

407

an assistant professor in the Department of Management Sciences in the Faculty of
Engineering and the Associate Director of Research Training for the Games Institute
at the University of Waterloo. He is also cross-appointed in both the Cheriton School
of Computer Science and the Department of Systems Design Engineering. Dr.
Hancock received his PhD from the University of Calgary.

THEODORE D. HELLMANN received his PhD from the University of Calgary in 2015
for work covering test-driven development of graphical user interfaces after being
a member of the Agile Software Engineering lab since 2008. His interests range
from agile methodologies and testing through user-centered design, informative
workspaces, software process management, and tech startups.

UTA HINRICHS is a Lecturer at the University of St Andrews, Scotland, UK in the
SACHI research group. She holds a PhD in Computational Media Design from
the University of Calgary. Uta’s research is at the intersection of visualization, HCI,
design, the humanities, and art. Her work focuses on designing and studying the use
and experience of interactive systems that facilitate the exploration and analysis of
(cultural) data collections from academic, leisurely, and artistic perspectives.

SAMUEL HURON is an Associate Professor at Mines Telecom Paris Tech in Design
and Information Telecommunication Technologies. He graduated is PhD in 2014
from the university Paris Sud in collaboration with INRIA. He was then invited as
a Post doctorate researcher at the university of Calgary. Before, he was the lead
designer of the Institute of Research and Innovation of the Pompidou Center in
Paris. His experience is based on fifteen years in interactive media industry where he
worked for a broad range of civic, cultural and corporate clients.

PHILIPPE KRUCHTEN is Professor of Software Engineering in the Department
of Electrical and Computer Engineering of the University of British Columbia, in
Vancouver, Canada. He joined UBC in 2004 after a 30+ year career in industry, where
he worked mostly with large software-intensive systems design in the domains of
telecommunication, defense, aerospace and transportation. His current research
interests are in software architecture and the phenomenon of technical debt, which
slows down the evolution of large software.

BEN LAFRENIERE is a Human-Computer Interaction researcher at Autodesk
research in Toronto, Canada. His research interest is in the areas of interactive help
systems, the design of novel interaction mechanisms, and the usability of feature-
rich software. While at the University of Waterloo, he developed the idea of task-
centric user interfaces, in which high-level tasks and goals are used as the central
organizing principle for a user interface.

LINDSAY MACDONALD is a PhD candidate in the Computational Media Design
Interdisciplinary Graduate Group at the University of Calgary in Canada, co-
supervised by Sheelagh Carpendale and Jean-René Leblanc. Her approach to
research and creative production combines methodologies from computer science,
design and art. She is interested in investigating creating site-specific interactive
art installations liminal places, along with the design and interaction challenges
inherent in the process. Additionally, she is examining and documenting processes
and practices in interdisciplinary art/computer science collaborative projects.

KARON MACLEAN is Professor in Computer Science at UBC (B.Sc. in Biology
and Mechanical Engineering from Stanford [1986]; M.Sc. and Ph.D. in Mechanical

408

Engineering from MIT [1996]), with industry experience in robotics and interaction
design. Her research interests are in situated haptic and multimodal interfaces, and
affective, therapeutic human-robotic interaction. Karon received the Charles A.
McDowell Award, 2008; is the Assoc. Editor of IEEE Transactions on Haptics; and
was the co-chair of the 2010 and 2012 IEEE Haptics Symposium.

PHILLIP MCCLELLAND completed his BASc in Systems Design Engineering
at the University of Waterloo in 2011. He completed an MASc from the same
department in 2013 as part of the SurfNet program. He led the software design and
development of the Dominion digital tabletop game and the cross-device transfer
methods use in the initial study discussed in the “Cross-Device Content Transfer
in Table-Centric Multi-Surface Environments” chapter as part of his Master’s thesis
research. Previously, he also served as an undergraduate research assistant in the
Collaborative Systems Lab at the University of Waterloo. He now works as a User
Experience Designer in Kitchener, Ontario, Canada.

SYLVAIN MALACRIA is a research scientist at Inria Lille, in the Mjolnir group. His
research interests are in Human-Computer Interaction, particularly on understanding
and improving the transition from novice to expert mode in graphical interfaces,
and on identifying which type of resources (software and hardware) can be used to
enrich the input bandwidth.

REGAN L. MANDRYK is an Associate Professor of Computer Science at the
University of Saskatchewan. She pioneered the area of physiological evaluation
for computer games in her PhD research on affective computing at Simon Fraser
University with support from Electronic Arts. With over 100 papers that have been
cited over 4000 times, she continues to investigate novel ways of understanding
players and player experience in partnership with multiple industrial collaborators,
but also develops and evaluates persuasive games, exergames, games for special
populations including children with neurodevelopmental disorders, games that
foster interpersonal relationships, and ubiquitous games that merge the real world
with the game world. She has been the invited keynote speaker at two international
game conferences, led the Games theme in the Canadian GRAND NCE, was the
papers chair for the inaugural CHI PLAY conference, and is leading the new games
subcommittee for SIGCHI.

NICOLAI MARQUARDT is a Lecturer in Physical Computing at University College
London. At the UCL Interaction Centre he is working in the research areas of
ubiquitous computing, physical user interfaces and interactive surfaces. In particular,
his research of Proxemic Interactions focuses on how to exploit knowledge about
people’s and devices spatial relationships in interaction design. He graduated with
a PhD in Computer Science from the Interactions Lab at the University of Calgary,
and joined Microsoft Research in Cambridge and Redmond as an intern during his
graduate studies. Together with Saul Greenberg, Sheelagh Carpendale and Bill
Buxton he is co-author of ‘Sketching User Experiences: The Workbook’ (Morgan-
Kaufmann 2012). http://www.nicolaimarquardt.com

FRANK MAURER is a professor of Computer Science, and Principal Investigator of
the NSERC SurfNet Strategic Network, at the University of Calgary. He also serves
as Associate Vice-President (Research) at the University. Dr. Maurer is the co-founder
and CTO of a start-up company, VizworX. He has authored and co-authored over of
170 peer-reviewed publications on agile methods, multi-surface systems, analytics
technologies and knowledge management.

409

MIGUEL NACENTA is a senior lecturer at the University of St Andrews, Scotland, UK.
He is a co-founder of the St Andrews Human-Computer Interaction group (SACHI)
and the Scottish Informatics and Computer Alliance (SICSA) HCI theme co-leader.
Miguel has been part of NSERC’s SurfNet since its inception, when he was a PhD
student under the supervision of Carl Gutwin. His interests rotate around multi-
display environments, multi-touch interaction techniques, perception in visualization
and computational typography.

LOUISE ORAM is a scientific programmer at the Oslo University Hospital, with
a group that researches image-guided surgery. She graduated from UBC with a
Master’s of Science from the Department of Computer Science (specialization in
Human Computer Interaction) in 2014.

MATTHEW OSKAMP recently completed his MSc Degree from Queen’s University
where he researched and developed military applications for interactive tabletops.
He created the TerraGuide system for analyzing virtual terrain using a multi-surface
environment, and co-developed the OrMiS multi-surface environment for simulation-
based training. He is now a software developer with Stantive Technologies working
on the Salesforce platform.

ERIK PALUKA completed his BSc from the University of Ontario Institute of
Technology in 2013. His MSc (2015) from the University of Ontario Institute of
Technology focused on mid-air gesture techniques for interacting with off-screen
content.

JULIAN PETFORD is a PhD student at the University of St Andrews in Scotland. His
research involves exploring the use of full-coverage display systems (FCDs) and their
potential use in office and home environments. This includes designing and building
software and hardware that supports full coverage applications that are inexpensive
to build and easy to program.

DAVID PINELLE is a Senior Business Analyst at the Saskatchewan Health Quality
Council, and has also held positions as an associate researcher at the National
Research Council of Canada and as an assistant professor in computer science
at University of Nevada Las Vegas. His research interests in Computer-Supported
Cooperative Work involve support for loosely coupled collaboration, coordination
over surfaces, and groupware evaluation.

SYDNEY PRATTE is an MSc candidate in the Computer Science department at
the University of Calgary and is a member of the Agile Surface Engineering lab
headed by Dr. Frank Maurer. Sydney completed her BSc in Computer Science with a
concentration in HCI and a BA in Italian Studies. Sydney enjoys interface design and
iOS development. In her spare time Sydney likes to read and hike with her puppy
Bentley.

JOEY SCARR is a senior developer at Google in Sydney, Australia. He completed
his PhD at the University of Canterbury in Christchurch, New Zealand in 2014. His
research interests involve the design of novel interaction techniques, primarily based
on the principles of spatial memory and spatial stability.

STACEY D. SCOTT is an Associate Professor of Systems Design Engineering, with
a Cross Appointment in English, at the University of Waterloo. She was an early
pioneer of surface computing in her PhD research on collaborative digital tabletops

410

at the University of Calgary, and has impacted the surface computing community
through ongoing scholarship and community service. With over 100 scientific
articles that have been cited over 3000 times, including the seminal papers,
“System guidelines for co-located, collaborative work on a tabletop display”, and
“Territoriality in collaborative tabletop workspaces”, she continues to investigate
the needs of co-located collaborators and to develop novel surface computing
interfaces and interaction techniques to support these needs. She has organized
workshops covering such topics as collaborative tabletop systems (ACM CSCW
2002), interactive walls and tabletops (ACM UBICOMP 2002), social theories and
interactive surfaces (SurfNet Annual Workshop 2014), and multi-surface systems
to support co-located collaboration (ACM CSCW 2015). She has twice served as
a Program Co-Chair for the ACM ITS conference, regularly serves on its Program
Committee, and currently serves on its Conference Steering Committee. In 2010, she
co-directed an academic exchange program that enabled Canadian and European
students to receive state-of-the-art international research training on interactive
surfaces from 2010-2013.

TEDDY SEYED is a designer, developer and PhD Student at the University of Calgary.
His primary research focus is designing new wearable technologies and interactions
for multi-surface environments.

PETER SIMONYI recently graduated from Carleton University with a Master’s degree
in Computer Science. His main focus was on interaction history management and
undo-like features that support people using software to explore multiple solutions.
He has also made brief forays into other topics such as gesture recognition on
shared touchscreens and language design.

KALEV SIKES was a SurfNet co-op intern from 2013-2014.

ANTHONY TANG is an Assistant Professor in the Department of Computer Science
at the University of Calgary. He directs the RICELab (Rethinking Interaction,
Collaboration and Engagement) research group. His research interests are situated
in Computer Supported Cooperative Work (CSCW), the study of how people work
together using technology—with a twist of Ubiquitous Computing technology—
in everyday scenarios. His current research investigates the integration of mobile
devices in large display environments, exploration into personal informatics, and
telecommunication technologies for collaborative work.

RICHARD TANG is a member of the Interactions Lab and RICELab at the University
of Calgary. He completed his BSc in Computer Science at the University of Calgary
and stayed to do his MSc under Anthony Tang. He completed his MSc in 2015
after developing and writing his thesis on Physio@Home. Outside of research, he
is a military history buff with a specific interest in armoured vehicles. He currently
lives in Calgary playing video games, watching anime, and collecting mechanical
keyboards and fountain pens.

ALICE THUDT is currently a PhD student in Computational Media Design. She is
pursuing here research at the InnoVis Group at the University of Calgary, Canada
under the supervision of Prof. Dr. Sheelagh Carpendale. She graduated in Media
informatics at the University of Munich (LMU), Germany in 2012. Her main areas of
interest are information visualization, human computer interaction and interaction
design. In particular, here research focuses on personal visualization that supports
individuals in using their personal data collections for reminiscing and helps them to

411

integrate their digital possessions into their everyday lives.

JULIE TOURNET completed her BSc in Engineering in Télécom Bretagne (France)
and was offered the opportunity to spend a year in the Collaborative Systems
Laboratory under the supervision of Dr. Stacey Scott at the University of Waterloo
(Canada) as part of the transatlantic LEIF exchange program. Integrated to
the SurfNet consortium, her work focused on the Surface Ghost Project, aiming
to improve T-MSE’s user awareness by providing them with a visual feedback of
their actions on the shared surface. After the end of her exchange, she pursued
her studies at the University of Waterloo with an MASc in Electrical and Computer
Engineering. She is now a Ph.D. candidate at the University of Montpellier in France
and kept close contacts with the SurfNet community.

JAGODA WALNY is a PhD Candidate at the Innovations in Visualization (InnoVis)
research group in the Interactions Lab (iLab) at the University of Calgary, supervised
by Dr. Sheelagh Carpendale. Her research focuses on enabling interactive visual
thinking in information visualization interfaces — both in terms of representation
and interaction — to support people in better engaging with and understanding
information.

YUXI WANG is a 4th-year undergraduate student in the Computer Science
department at the University of Calgary. He is also a software developer with the
Agile Surface Engineering lab led by Dr. Frank Maurer. Yuxi is enthusiastic about
using computer technologies to solve problems. Javascript, C#, and Swift are Yuxi’s
most recently used programming language. Yuxi likes to discover things to do in life.
Recently, Yuxi has discovered traveling is a fun thing to do, and he strives to save up
for future travel plans.

JEFF WILSON is a recent graduate with a Masters in Computer Science from
Carleton University and an undergraduate degree in Computer Science with a
minor in Psychology (highest honors). Over the course of his studies he co-authored
several publications on several topics relating to collaborative decision support
using interactive visualizations on large surface multi-touch displays. Jeff’s current
focus is on employing the latest web-based resources to help individuals and teams
overcome cognitive biases while making challenging decisions.

412

REFERENCES

413

HUMANIZING THE DIGITAL INTERFACE

Agrawala, M. and Stolte, C. Rendering effective route maps: improving usability
through generalization (2001). In Proceedings of SIGGRAPH, ACM.

Anderson, P.A., Leibowitz, K. The Development and Nature of the Construct Touch
Avoidance. Nonverbal Behaviour. 3(2). 1978. 89-106.

Anslow, C., P. Campos, et al. (2014). Collaboration Meets Interactive Surfaces: Walls,
Tables, Tablets, and Phones (CMIS). Proceedings of the Ninth ACM International
Conference on Interactive Tabletops and Surfaces. Dresden, Germany, ACM: 495-
498.

Anslow, C., S. Marshall, et al. (2013). SourceVis: Collaborative software visualization
for co-located environments. Software Visualization (VISSOFT), 2013 First IEEE
Working Conference on.

Azazi, A., T. Seyed, et al. (2014). Investigating inertial measurement units for spatial
awareness in multi-surface environments. Proceedings of the 2nd ACM symposium
on Spatial user interaction. Honolulu, Hawaii, USA, ACM: 152-152.

Bachl, S., Tomitsch, M., Kappel, K. and Grechenig, T. (2011). The Effects of Personal
Displays and Transfer Techniques on Collaboration Strategies in Multi-touch Based
Multi-Display Environments. Proceedings of the IFIP TC13 Conference on Human-
Computer Interaction (INTERACT), Lisbon, Portugal, 373–390.

Baglioni, M., Lecolinet, E. and Guiard, Y. JerkTilts: using accelerometers for eight-
choice selection on mobile devices. Proc. ICMI 2011, 121-128.

Bailenson, J.N., Blascovich, J., Beall, A.C., Loomis, J.M., Interpersonal Distance in
Immersive Virtual Environments. PSPB ’03. 29, 7. 819-833.

Bailly, G., Lecolinet, E. and Nigay, L. Flower menus: a new type of marking menu
with large menu breadth, within groups and efficient expert mode memorization.
Proc. AVI 2008, 15-22.

Bailly, G., Müller, J. and Lecolinet, E. Design and Evaluation of Finger-Count
Interaction: Combining Multitouch gestures and Menus. IJHCS 70(12):673-689.

Ballendat, T., Marquardt, N. and Greenberg, S. (2010) Proxemic Interaction:
Designing for a Proximity and Orientation-Aware Environment. In Proceedings
of the ACM Conference on Interactive Tabletops and Surfaces - ACM ITS’2010.
(Saarbruecken, Germany), ACM Press, 10 pages, November 7-10.

Banovic, N., Li, F., Dearman, D., Yatani, K. and Truong, K. Design of unimanual multi-
finger pie menu interaction. Proc. ITS 2011, 120-129.

Bau, O., and Mackay, W., OctoPocus: a dynamic guide for learning gesture-based
command sets. Proc. UIST 2008, 37-46.

Baudisch, P., Cutrell, E., Robbins, D., Czerwinski, M., Tandler, P., Bederson, B. and
Zierlinger, A. (2003). Drag-and-pop and drag-and-pick: Techniques for accessing
remote screen content on touch-and pen-operated systems. Proceedings of the IFIP
TC13 Conference on Human-Computer Interaction (INTERACT), Zurich, Switzerland,
57–64.

Besacier, G., Rey, G., Najm, M., Buisine, S. and Vernier, F. (2007). Paper metaphor for
tabletop interaction design. J. Jacko (Ed.). Human-Computer Interaction: Interaction
Platforms and Techniques Springer-Verlag Berlin Heidelberg, LNCS 4551, 758–767.

414

Beyer, H. and Holtzblatt, K. (1998). Contextual design: defining customer-centered
systems. San Francisco, CA, Morgan Kaufmann Publishers Inc.

Bhaskar, R. K., J. Paredes, et al. (2014). VACI: Towards visual analytics for criminal
investigation. Visual Analytics Science and Technology (VAST), 2014 IEEE Conference.

Boring, S., S. Greenberg, et al. (2014). “The Dark Patterns of Proxemic Sensing.”
Computer 47(8): 56-60.

Bortolaso, C., T. C. N. Graham, et al. (2014). From Personal Computers to
Collaborative Digital Tabletops to Support Simulation Based-Training. Proceedings
of ICCRTS 2014: 19th Annual International Command and Control Research and
Technology Symposium, Alexandria, VA.

Brosz, J., Nacenta, M. A., Pusch, R., Carpendale, S., Hurter, C. Transmogrification:
Casual Manipulation of Visualizations (2013). In Proceedings of UIST, ACM.

Brudy, F., D. Ledo, et al. (2014). Is Anyone Looking? Mitigating Shoulder Surfing on
Public Displays through Awareness and Protection. Proceedings of The International
Symposium on Pervasive Displays. Copenhagen, Denmark, ACM: 1-6.

Carroll, J.M., Rosson, M. B. Paradox of the active user, Interfacing thought: cognitive
aspects of human-computer interaction, MIT Press, Cambridge, MA, 1987.

Carroll, J.M., Thomas, J.C. Metaphor and the Cognitive Representation of
Computing Systems. IEEE Trans. on Systems, Man and Cybernetics. 12(2). 1982.
107-116.

Chang, Y. L. B., S. D. Scott, et al. (2014). Supporting Situation Awareness in
Collaborative Tabletop Systems with Automation. Proceedings of the Ninth ACM
International Conference on Interactive Tabletops and Surfaces. Dresden, Germany,
ACM: 185-194.

Cheung, V. and S. D. Scott (2015a). A laboratory-based study methodology to
investigate attraction power of large public interactive displays. Proceedings of the
2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing.
Osaka, Japan, ACM: 1239-1250.

Cheung, V. and S. D. Scott (2015b). Studying Attraction Power in Proxemics-Based
Visual Concepts for Large Public Interactive Displays. Proceedings of ITS 2015: ACM
Conference on Interactive Tabletops and Surfaces. Madeira, Portugal, ACM Press.

Cheung, V., D. Watson, et al. (2014). Overcoming Interaction Barriers in Large Public
Displays Using Personal Devices. Proceedings of the Ninth ACM International
Conference on Interactive Tabletops and Surfaces. Dresden, Germany, ACM: 375-
380.

Chokshi, A., T. Seyed, et al. (2014). ePlan Multi-Surface: A Multi-Surface Environment
for Emergency Response Planning Exercises. Proceedings of the Ninth ACM
International Conference on Interactive Tabletops and Surfaces. Dresden, Germany,
ACM: 219-228.

Cockburn, A., Gutwin, C., Scarr, J., and Malacria, S, Supporting Novice to Expert
Transitions in User Interfaces. ACM Computing Surveys 47, 2, Article 31 (November
2014), 36 pages.

Cohen, J. Eta-squared and partial eta-squared in communication science. Human
Communication Research 28(56):473-490.

Collomb, M. and Hascoët, M. (2008). Extending drag-and-drop to new interactive
environments: A multi-display, multi-instrument and multi-user approach. Interacting
with Computers, 20(6), 562–573.

415

Collomb, M., Hascoët, M., Baudisch, P. and Lee, B. (2005). Improving drag-and-drop
on wall-size displays. Proceedings of Graphics interface 2005, 25–32.

Craik, F., and Lockhart, R. 1972. Levels of processing: A framework for memory
research. Journal of Verbal Learning and Verbal Behavior 11, 671--684.

Dandekar, K., Raju, B. and Srinivasan, M. 3-D finite-element models of human
and monkey fingertips to investigate the mechanics of tactile sense. Journal of
Biomechanical Engineering, 125, 5, 2003, 682-691.

Dingler, T., M. Funk, et al. (2015). Interaction Proxemics: Combining Physical Spaces
for Seamless Gesture Interaction. Proceedings of the 4th International Symposium
on Pervasive Displays. Saarbruecken, Germany, ACM: 107-114.

Diaz-Marino, R. and Greenberg, S. (2010) The Proximity Toolkit and ViconFace: The
Video. Proc. ACM CHI Extended Abstracts, ACM.

Doeweling, S. and Glaubitt, U. (2010). Drop-and-drag: easier drag & drop on
large touchscreen displays. Proceedings of the 6th Nordic Conference on Human-
Computer Interaction, 158–167.

Doucette, A., R. L. Mandryk, et al. (2013). The effects of tactile feedback and
movement alteration on interaction and awareness with digital embodiments.
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
Paris, France, ACM: 1891-1900.

Fitts, P. M. and Posner, M. I. 1967. Human Performance. Belmont, CA, Brookes/Cole.

Fei, S., Webb, A.M., Kerne, A., Qu, Y. and Jain, A. (2013). Peripheral array of tangible
NFC tags: positioning portals for embodied trans-surface interaction. Proceedings
of the 2013 ACM international conference on Interactive tabletops and surfaces, St.
Andrews, UK, 33-36.

Fu, W. and Gray, W. Resolving the paradox of the active user: Stable suboptimal
performance in interactive tasks. Cognitive Science 28, 6 (2004), 901--935.

Genest, A. and C. Gutwin (2012). Evaluating the effectiveness of height visualizations
for improving gestural communication at distributed tabletops. Proceedings of
the ACM 2012 conference on Computer Supported Cooperative Work. Seattle,
Washington, USA, ACM: 519-528.

Genest, A. M., C. Gutwin, et al. (2013). KinectArms: a toolkit for capturing and
displaying arm embodiments in distributed tabletop groupware. Proceedings of the
ACM Conference on Computer Supported Cooperative Work, ACM: 157–166.

Gray, W., Sims, C., Fu, W. and Schoelles, M. The soft constraints hypothesis: A rational
analysis approach to resource allocation for interactive behavior. Psychological
Review 113 (2006), 461--482.

Greenberg, S., Boring, S., Vermeulen, J. and Dostal, J. (2014). Dark patterns in
proxemic interactions: a critical perspective. Proceedings of the 2014 conference on
Designing interactive systems. Vancouver, BC, Canada, ACM: 523-532.

Greenberg, S. and Kuzuoka, H. (1999) Using digital but physical surrogates to
mediate awareness, communication and privacy in media spaces. Personal and
Ubiquitous Computing 3,4, 182-198.

Greenberg, S., K. Hornbæk, et al. (2014). “Proxemics in Human-Computer Interaction
(Report from Dagstuhl Seminar 13452).” Dagstuhl Reports 3(11): 29–57.

Greenberg, S., Marquardt, N., Ballendat, T., Diaz-Marino, R. and Wang, M. (2011)
Proxemic Interactions: The New Ubicomp?. ACM Interactions, 18(1):42-50. ACM,

416

January-February.

Greenberg, S., Marwood, D. Real Time Groupware as a Distributed System:
Concurrency Control and its Effect on the Interface. CSCW ’94. 207-217.

Gutwin, C., A. Cockburn, et al. (2015). Testing the rehearsal hypothesis with two
FastTap interfaces. Proceedings of the 41st Graphics Interface Conference. Halifax,
Nova Scotia, Canada, Canadian Information Processing Society: 223-231.

Ha, V., Inkpen, K.M., Mandryk, R.L., Whalen, T. Direct Intentions: The Effects of Input
Devices on Collaboration around a Tabletop Display. TABLETOP 2006. 177-184.

Hall, E.T. The Hidden Dimension. Doubleday, Garden City, N.Y, 1966.

Haller, M., Leitner, J., Seifried, T., Wallace, J.R., Scott, S.D., Richter, C., Brandl,
P., Gokcezade, A. and Hunter, S. (2010). The NiCE discussion room: Integrating
paper and digital media to support co-located group meetings. Proceedings of
the international conference on Human factors in computing systems (CHI 2010),
609–618.

Hart, S. and Staveland, L. Development of NASA-TLX (Task Load Index): Results of
Empirical and Theoretical Research. in Hancock, P. and Meshkati, N. eds. Human
Mental Workload, 1988, 139-183.

Hajizadehgashti, S. (2012). Investigating the impact of table size on external
cognition in collaborative problem-solving tabletop activities. Systems Design
Engineering. Waterloo, Ontario, Canada, University of Waterloo.

Hascoët, M. (2003). Throwing models for large displays. Proceedings of the
International Conference on Human Computer Interaction (HCI’03), Bath, UK, 73-77.

Haubner, N., Schwanecke, U., Dörner, R., Lehmann, S. and Luderschmidt, J. (2013).
Detecting interaction above digital tabletops using a single depth camera. Machine
Vision and Applications, 24(8), 1575-1587.

Hayduk, L.A. Personal Space: Where We Now Stand. Psychological Bulletin. 94(2).
1983. 293-335.

Henrik Soerensen and J. Kjeldskov (2013). Moving Beyond Weak Identifiers for
Proxemic Interaction. Proceedings of International Conference on Advances in
Mobile Computing and Multimedia. Vienna, Austria, ACM: 18-22.

Heslin, R, Nguyen, T.D., Nguyen, M.L. Meaning of touch: The case of touch from a
stranger or same sex person. Nonverbal Behaviour. 7(3). 1983. 147-157.

Hilliges, O., Izadi, S., Wilson, A.D., Hodges, S., Garcia-Mendoza, A. and Butz,
A. (2009). Interactions in the air: adding further depth to interactive tabletops.
Proceedings of ACM Symposium on User Interface Software and Technology,
Victoria, BC, 139-148.

Hinckley, K., Ramos, G., Guimbretiere, F., Baudisch, P. and Smith, M. (2004). Stitching:
pen gestures that span multiple displays. Proceedings of the working conference on
Advanced visual interfaces (AVI), Gallipoli, Italy, 23–31.

Hinrichs, U., S. Carpendale, et al. (2013). “Interactive Public Displays.” Computer
Graphics and Applications, IEEE 33(2): 25-27.

Hinrichs, U., N. Valkanova, et al. (2011). Large displays in urban life - from exhibition
halls to media facades. CHI ‘11 Extended Abstracts on Human Factors in Computing
Systems. Vancouver, BC, Canada, ACM: 2433-2436.

Hornecker, E., Marshall, P., Dalton, N.S., Rogers, Y. Collaboration and interference:
awareness with mice or touch input. CSCW 2008. 167-176.

417

Hsu, S. C., Lee, I. H. H., and Wiseman, N. E. Skeletal Strokes (1993). In Proceedings
of UIST, ACM.

Huron, S., Y. Jansen, et al. (2014). “Constructing Visual Representations: Investigating
the Use of Tangible Tokens.” Visualization and Computer Graphics, IEEE Transactions
on 20(12): 2102-2111.

IDC. IDC Forecasts Worldwide Tablet Shipments to Surpass Portable PC Shipments
in 2013, www.idc.com/ getdoc.jsp?containerId=prUS24129713, 2013.

Isenberg, P., B. Lee, et al. (2015). Workshop on Data Exploration for Interactive
Surfaces (DEXIS). Proceedings of ITS 2015: ACM International Conference on
Interactive Tabletops and Surfaces. Madeira, Portugal.

Ishii, H., Kobayashi, M., Grudin, J. Integration of interpersonal space and shared
workspace: ClearBoard design and experiments. T. Inf. Syst. 11, 4, ‘93, 349-375.

Izadi, S., Brignull, H., Rodden, T., Rogers, Y., Underwood, M., Dynamo: A public
interactive surface supporting the cooperative sharing and exchange of media. UIST
’03. 159-168.

Jakobsen, M. R. and K. Hornbaek (2015). Is Moving Improving?: Some Effects
of Locomotion in Wall-Display Interaction. Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems. Seoul, Republic of Korea,
ACM: 4169-4178.

Jeffrey, P., Mark, G. Navigating the virtual landscape: co-ordinating the shared use
of space. In Social Navigation of Information Space, 112-131.

Jourard, S.M. An Exploratory Study of Body-Accessibility. J. Soc. Clin. Psych., 5,
1966. 221-231.

Major, B., Heslin, R. Perceptions of cross-sex and same-sex nonreciprocal touch: It is
better to give than to receive. Nonverbal Behaviour. 6(3). 1982. 148-162.

Ju, W., Lee, B.A., and Klemmer, S.R. Range: exploring implicit interaction through
electronic whiteboard design. Proc. ACM CHI (2008), 17-26.

Kin, K., Hartmann, B., and Agrawala, M., Two-Handed Marking Menus for Multitouch
Devices. ToCHI 18(3): article 16.

Kobayashi, K., Narita, A., Hirano, M., Tanaka, K., Katada, T. and Kuwasawa, N. (2008).
DIGTable: A Tabletop Simulation System for Disaster Education. Proceedings of the
6th International Conference on Pervasive Computing (Pervasive2008), 57–60.

Kurtenbach, G. and Buxton, W. Issues of Combining Marking and Direct Manipulation
Techniques. Proc. UIST 1991, 137-144.

Kurtenbach, G. and Buxton, W. User Learning and Performance with Marking Menus.
Proc. CHI 1994, 258-264.

Kurtenbach, G., Fitzmaurice, G., Owen, R. and Baudel, T. The Hotbox: efficient
access to a large number of menu-items. Proc. CHI 1999, 231-237.

Kurtenbach, G., Sellen, A. and Buxton, W. An Empirical Evaluation of Some
Articulatory and Cognitive Aspects of Marking Menus. Human-Computer Interaction
8(1):1-23.

Kurtenbach, G.P. The design and evaluation of marking menus, PhD Thesis,
University of Toronto, 1993.

Kuzminykh, A., S. D. Scott, et al. (2015). How to Measure Social Presence: The Role
of Speech Patterns. Poster Presentation at Graphics Interface 2015, Halifax, NS,
Canada.

418

Ledo, D., B. A. Aseniero, et al. (2013). OneSpace: shared depth-corrected video
interaction. CHI ‘13 Extended Abstracts on Human Factors in Computing Systems.
Paris, France, ACM: 997-1002.

Ledo, D., S. Greenberg, et al. (2015). Proxemic-Aware Controls: Designing Remote
Controls for Ubiquitous Computing Ecologies. Proceedings of the 17th International
Conference on Human-Computer Interaction with Mobile Devices and Services.
Copenhagen, Denmark, ACM: 187-198.

Ledo, D., Greenberg, S., Marquardt, N., Boring, B. (2015) Proxemic-Aware Controls:
Designing Remote Controls for Ubiquitous Computing Ecologies. In Proceedings of
MobileHCI 2015. ACM, New York, NY, USA.

Lepinski, G., Grossman, T. and Fitzmaurice, G. The design and evaluation of
multitouch marking menus Proc. CHI 2010, 2233-2242.

Malacria, S., Bailly, G., Harrison, J., Cockburn, A., Gutwin, C. Promoting Hotkey
use through rehearsal with ExposeHK, Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, April 27-May 02, 2013, Paris, France

Marquardt, N. (2013). Proxemic interactions with and around digital surfaces.
Proceedings of the 2013 ACM international conference on Interactive tabletops and
surfaces. St. Andrews, Scotland, United Kingdom, ACM: 493-494.

Marquardt, N., Ballendat, T., Boring, S., Greenberg, S. and Hinckley, K. (2012)
Gradual Engagement between Digital Devices as a Function of Proximity: From
Awareness to Progressive Reveal to Information Transfer. In Proceedings of the ACM
Conference on Interactive Tabletops and Surfaces - ACM ITS 2012. (Boston, MA).

Marquardt, N., Diaz-Marino, R., Boring, S. and Greenberg, S. (2011). The proximity
toolkit: prototyping proxemic interactions in ubiquitous computing ecologies.
Proceedings of the 24th annual ACM symposium on User interface software and
technology. Santa Barbara, California, USA, ACM: 315-326.

Marquardt, N. and S. Greenberg (2012). “Informing the Design of Proxemic
Interactions.” IEEE Pervasive Computing 11(2): 14-23.

Marquardt, N. and Greenberg, S. (2015) Proxemic Interactions: From Theory to
Practice. (Series: Synthesis Lectures on Human-Centered Informatics, John M.
Carroll, Ed., Ed.) 199 pages Morgan-Claypool, February 24.

Marquardt, N., K. Hinckley, et al. (2012). Cross-device interaction via micro-mobility
and f-formations. Proceedings of the 25th annual ACM symposium on User interface
software and technology. Cambridge, Massachusetts, USA, ACM: 13-22.

McClelland, P.J. (2013). Bridging Private and Shared Interaction Surfaces in
Collocated Groupware. M.A.Sc. Thesis, Systems Design Engineering, University of
Waterloo, Waterloo, ON, Canada.

Mckinlay, J. D., Robertson, G. G., and Card, S. K. The perspective wall: Detail and
context smoothly integrated (1991). In Proceedings of CHI, ACM.

Morris, M., Ryall, K., Shen, C., Forlines, C., Vernier, F. Beyond “Social Protocols”:
Multi-User Coordination Policies for Co-Located Groupware. CSCW ’04. 262-265.

Mostafa, A. E., S. Greenberg, et al. (2013). Interacting with microseismic visualizations.
CHI ‘13 Extended Abstracts on Human Factors in Computing Systems. Paris, France,
ACM: 1749-1754.

Mueller, F., S. Stellmach, et al. (2014). Proxemics play: understanding proxemics
for designing digital play experiences. Proceedings of the 2014 conference on
Designing interactive systems. Vancouver, BC, Canada, ACM: 533-542.

419

Nacenta, M.A., Aliakseyeu, D., Subramanian, S. and Gutwin, C. (2005). A comparison
of techniques for multi-display reaching. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, Portland, Oregon, USA, 371-380.

Nacenta, M.A., Gutwin, C., Aliakseyeu, D. and Subramanian, S. (2009). There
and Back Again: Cross-Display Object Movement in Multi-Display Environments.
Human-Computer Interaction, 24(1-2), 170–229.

Nacenta, M.A., Pinelle, D., Gutwin, C., Mandryk, R.L. Individual and Group Support
in Tabletop Interaction Techniques. TABLETOP 2010, 303–333.

Nacenta, M.A., Pinelle, D., Stuckel, D., Gutwin, C. The effects of interaction
technique on coordination in tabletop groupware. GI 2007. 191-198.

Nguyen, T., Heslin, R., Nguyen, M.L. The meanings of touch: Sex differences. Comm.
‘73. 25(3). 92-103.

Oskamp, M., C. Bortolaso, et al. (2015). TerraGuide: Design and Evaluation of a
Multi-Surface Environment for Terrain Visibility Analysis. Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems. Seoul, Republic
of Korea, ACM: 3553-3562.

Parhi, P., Karlson, A. and Bederson, B. Target size study for one-handed thumb use
on small touchscreen devices. Proc. Mobile HCI 2003, 203-210.

Park, Y., Han, S., Park, J. and Cho, Y. Touch key design for target selection on a
mobile phone Proc. Mobile HCI 2008, 423-426.

Patterson, M.L., Powel, J.L., Lenihan, M.G. Touch, compliance, and interpersonal
affect. Nonverbal Behaviour. 10(1). 1986. 41-50.

Pauchet, A., Coldefy, F., Lefebvre, L., Louis dit Picard, S., Perron, L., Guérin, J.
Tabletops: Worthwhile Experience of Collocated and Remote Collaboration. Proc.
TABLETOP. 2007. 27–34.

Pinelle, D., Nacenta, M., Gutwin, C., Stach, T. The effects of co-present embodiments
on awareness and collaboration in tabletop groupware. GI 2008. 1-8.

Rosenfeld, L.B., Kartus, S., Ray, C. Body Accessibility Revisited. Communication.
26(3). 1976. 27-30.

Pyryeskin, D., Hancock, M. and Hoey, J. (2012). Comparing elicited gestures to
designer-created gestures for selection above a multitouch surface. Proceedings
of ITS 2012: ACM International Conference on Interactive Tabletops and Surfaces,
Cambridge, MA, 1-10.

Raedle, R., H.-C. Jetter, et al. (2014). Demonstrating HuddleLamp: Spatially-
Aware Mobile Displays for Ad-hoc Around-the-Table Collaboration. Proceedings
of the Ninth ACM International Conference on Interactive Tabletops and Surfaces.
Dresden, Germany, ACM: 435-438.

Rekimoto, J. (1997). Pick-and-drop: a direct manipulation technique for multiple
computer environments. Proceedings of the ACM Symposium on User interface
software and technology (UIST), Banff, AB, 31–39.

Rekimoto, J. (1998). A multiple device approach for supporting whiteboard-based
interactions. Proceedings of the ACM SIGCHI Conference on Human Factors in
Computing Systems, Los Angeles, CA, 344–351.

Rekimoto, J. and Saitoh, M. (1999). Augmented Surfaces: A spatially continuous
workspace for hybird computing environments. Proceedings of CHI’99: ACM
Conference on Human Factors in Computing Systems, Pittsburgh, PN, pp. 378-385.

420

Reynaga, G., S. Chiasson, et al. (2015). Exploring the Usability of CAPTCHAS
on Smartphones: Comparisons and Recommendations. Proceedings of NDSS
Workshop on Usable Security (USEC), Internet Society.

Roy, Q., Malacria, S., Guiard, Y., Lecolinet, E. and Eagan, J. Augmented letters:
mnemonic gesture-based shortcuts Proc. CHI 2013, 2325-2328.

Scarr, J., Cockburn, A., Gutwin, C. and Bunt, A. Improving command selection with
CommandMaps Proc. CHI 2012, 257-266.

Scarr, J., Cockburn, A., Gutwin, C. and Malacria, S. Testing the Robustness and
Performance of Spatially Consistent Interfaces. Proc. CHI 2013, 3139-3148.

Scarr, J., Cockburn, A., Gutwin, C., Quinn, P. Dips and ceilings: understanding and
supporting transitions to expertise in user interfaces, Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, May 07-12, 2011, Vancouver,
BC, Canada.

Scott, S. D., G. Besacier, et al. (2014). Surface Ghosts: Promoting Awareness of
Transferred Objects during Pick-and-Drop Transfer in Multi-Surface Environments.
Proceedings of the Ninth ACM International Conference on Interactive Tabletops
and Surfaces. Dresden, Germany, ACM: 99-108.

Scott, S.D., Besacier, G. and McClelland, P. (2014). Cross-Device Transfer in a
Collaborative Multi-Surface Environment without User Identification. Proceedings
of CTS 2014: International Conference on Collaboration Technologies and Systems,
Minneapolis, MN, 219-226.

Scott, S.D., Besacier, G., McClelland, P., Tournet, J., Goyal, N. and Cento, F.
(2015). Cross-Device Content Transfer in Table-Centric Multi-Surface Environments.
Technical Report, CSL2015-01, Department of Systems Design Engineering,
University of Waterloo, Waterloo, ON.

Scott, S.D. and Carpendale, S. (2010). Theory of Tabletop Territoriality. C. Müller-
Tomfelde (Ed.). Tabletops - Horizontal Interactive Displays, Springer, 375-406.

Scott, S.D., Carpendale, S.T., Inkpen, K.M. Territoriality in collaborative tabletop
workspaces. CSCW ‘04. 294-303.

Scott, S. D., T. C. N. Graham, et al. (2015). “Local Remote” Collaboration: Applying
Remote Group AwarenessTechniques to Co-located Settings. Proceedings of the
18th ACM Conference Companion on Computer Supported Cooperative Work
& Social Computing. Vancouver, BC, Canada, ACM: 319-324.

Scott, S.D., Mercier, S., Cummings, M.L. and Wang, E. (2006). Assisting Interruption
Recovery in Supervisory Control of Multiple UAVs. HFES 2006: 50th Annual Meeting
of the Human Factors and Ergonomic Society, San Francisco, CA, USA, 699-703.

Schmidt, R. Frequent augmented feedback can degrade learning: Evidence and
interpretations. Requin, J. ed., Tutorials in motor neuroscience, 1991, 59--75.

Serrano, M., Lecolinet, E. and Guiard, Y. Bezel-Tap gestures: quick activation of
commands from sleep mode on tablets Proc. CHI 2013, 3027-3036.

Seto, M., S. Scott, et al. (2012). Investigating menu discoverability on a digital
tabletop in a public setting. Proceedings of the 2012 ACM international conference
on Interactive tabletops and surfaces. Cambridge, Massachusetts, USA, ACM: 71-
80.

Simon, H. Satisficing. in Eatwell, J., Millgate, M. and Newman, P. eds. The New
Palgrave: A Dictionary of Economics, Stockton Press, 1987, 243--245.

421

Simonyi, P. T. (2015). Ra: Better support for “what-if” collaboration. School of
Computer Science. Ottawa, ON, Canada, Carleton University. Master of Computer
Science.

Slater, M., Steed, A. Meeting People Virtually: Experiments in Shared Virtual
Environments. The Social Life of Avatars: Presence and Interaction in Shared Virtual
Environments. 2002.

Smith, M.A., Farnham, S.D., Drucker, S.M. The Social life of Small Graphical Chat
Spaces. CHI ’00. 462-469.

Smallman, H.S. and St. John, M. (2003). CHEX (Change History EXplicit): New HCI
Concepts for Change Awareness. Proceedings of HFES 2003: 46th Annual Meeting
of the Human Factors and Ergonomics Society Santa Monica, CA, 528-532.

Stephen, R., Zweigenhaft, R.L. The Effect on Tipping of a Waitress Touching Male
and Female Customers. Social Psychology. 126(1). 1986. 141-142.

Streitz, N.A., Tandler, P. and Müller-tomfelde, C. (2001). Roomware: Towards the
Next Generation of Human-Computer Interaction Based on an Integrated Design of
Real and Virtual Worlds. J. A. Carroll (Ed.). Human-Computer Interaction in the New
Millennium, Addison-Wesley, 553-578.

Tang, A., Neustaedter, C., Greenberg, S. VideoArms: Embodiments for Mixed
Presence Groupware. People and Computers, in Proc of HCI ’06. 2-18.

Tang, A., Pahud, M., Inkpen, K., Benko, H., Tang, J.C., Buxton, B. Three’s Company:
Understanding Communication Channels in Three-way Distributed Collaboration.
CSCW2010. 271-280.

Tang, A., Tory, M., Po, B., Neumann, P., Carpendale, S. Collaborative Coupling over
Tabletop Displays. CHI 2006. 1181-1190.

Tang, J.C. Findings from Observational Studies of Collaborative Work. JMMS, 34(2).
1991. 143-160.

Thayer, S. History and Strategies of Research on Social Touch. Nonverbal Behaviour.
10(1). 1986. 12-28.

Thudt, A., U. Hinrichs, et al. (2012). The bohemian bookshelf: supporting
serendipitous book discoveries through information visualization. Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. Austin, Texas,
USA, ACM: 1461-1470.

Thudt, A., U. Hinrichs, et al. (2015). A Modular Approach to Promote Creativity
and Inspiration in Search. Proceedings of the 2015 ACM SIGCHI Conference on
Creativity and Cognition. Glasgow, United Kingdom, ACM: 245-254.

Tufte, E. R. Envisioning Information (1990). Graphic Press.

Tse, E., Histon, J., Scott, S.D., Greenberg, S. Avoiding interference: how people use
spatial separation and partitioning in SDG workspaces. CSCW 2004. 252-261.

Tuddenham, P. Robinson, P. Distributed Tabletops: Supporting Remote and Mixed-
Presence Tabletop Collaboration. TABLETOP 2007. 19-26.

Voelker, S., Weiss, M., Wacharamanotham, C. and Borchers, J. (2011). Dynamic
portals: a lightweight metaphor for fast object transfer on interactive surfaces.
Proceedings of the ACM International Conference on Interactive Tabletops and
Surfaces, Kobe, Japan, 158–161.

Vogel, D. and Balakrishnan, R. (2004). Interactive public ambient displays:
transitioning from implicit to explicit, public to personal, interaction with multiple

422

users. Proc. ACM UIST, 137-146.

Wagner, J., Huot, S., and Mackay, W. BiTouch and BiPad: Designing bimanual
interactions for hand-held tablets. Proc CHI 2012, 2317-2326.

Wallace, J. R., J. Pape, et al. (2012). Exploring automation in digital tabletop
board game. Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work Companion. Seattle, Washington, USA, ACM: 231-234.

Wallace, J.R., Scott S.D., Lai, E., and Jajalla, D. (2011). Investigating the Role of
a Large, Shared Display in Multi-Display Environments. Computer-Supported
Cooperative Work (CSCW), 20(6), 529-561.

Wallace, J. R., S. D. Scott, et al. (2013). Collaborative sensemaking on a digital
tabletop and personal tablets: prioritization, comparisons, and tableaux. Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. Paris, France,
ACM: 3345-3354.

Wallace, J.R., Scott, S.D., Stutz, T., Enns, T. and Inkpen, K. (2009). Investigating
teamwork and taskwork in single- and multi-display groupware systems. Personal
Ubiquitous Computing, 13(8), 569-581.

Wang, M., Boring, S. and Greenberg, S. (2012) Proxemic Peddler: A Public Advertising
Display that Captures and Preserves the Attention of a Passerby. In Proceedings of
the International Symposium on Pervasive Displays. (Porto, Portugal), ACM Press,
10 pages, June 4 - 5.

Weiser, M., 1991. The Computer for the 21st Century. Scientific American 265, 94–
104.

Wu, M., and Balakrishnan, R. Multi-finger and whole hand gestural interaction
techniques for multi-user tabletop displays. Proc. UIST 2003, 193-202.

Yee, N., Bailenson, J., Urbanek, B., Chang, F., Merget, D. The Unbearable Likeness
of Being Digital: The Persistence of Nonverbal Social Norms in Online Virtual
Environments. Cyberpsychology & Behaviour. 10(1). 2007. 115-121.

Zhao, S., Agrawala, M. and Hinckley, K. Zone and Polygon Menus: Using Relative
Position to Increase the Breadth of Multi-Stroke Marking Menus. Proc. CHI 2006,
1077-1086.

Zhou, H., V. Ferreira, et al. (2015). “Exploring Privacy Notification and Control
Mechanisms for Proximity-Aware Tablets.” Int. J. Mob. Hum. Comput. Interact. 7(3):
1-19.

IMPROVING SOFTWARE TIME TO MARKET

Alcantara, T. d. S., Denzinger, J., Ferreira, J., & Maurer, F. (2012). Learning gestures
for interacting with low-fidelity prototypes. Paper presented at the Proceedings of
the First International Workshop on Realizing AI Synergies in Software Engineering.

Alter, Adam L. and Daniel M. Oppenheimer. 2009. “Uniting the Tribes of Fluency
to Form a Metacognitive Nation.” Personality and social psychology review : an
official journal of the Society for Personality and Social Psychology, Inc 13(3):219–35.
Retrieved October 19, 2015.

Arias-Hernandez, Richard, Linda T. Kaastra, Tera Marie Green, And Brian Fisher,

423

2011. Pair Analytics: Capturing Reasoning Process In Collaborative Visual Analytics.
Volume System Sciences (Hicss), 44th Hawaii International Conference, IEEE, Pp.
1-10.

Arnheim, R. (1980). A plea for visual thinking. Critical Inquiry, 6(3), 489–497.

Axure RP: Interactive wireframe software and mockup tool. Retrieved from http://
www.axure.com/

Bailey, B. P., Konstan, J. A., & Carlis, J. V. (2001). DEMAIS: designing multimedia
applications with interactive storyboards. Paper presented at the Proceedings of the
ninth ACM international conference on Multimedia.

Balsamiq. Retrieved from www.balsamiq.com.

Barnum C. Usability Testing and Research [Book]. - New York : Pearson Education,
2002.

Bayer, J., Gacek, C., Muthig, D., and Widen, T., “PuLSE-I: Deriving Instances from a
Product Line Infrastructure”, Proceedings of the 7th IEEE International Conference
and Workshop on the Engineering of Computer-Based Systems, 2000, pp. 237 -
245.

Bernsen Niels Ole, Dybkjær Hans and Dybkjær Laila Wizard of Oz Prototyping: How
and When [Journal] // CCI Working Papers in Cognitive Science and HCI. - 1994.

Bertin, J., 1981. Graphics And Graphic Information Processing. Volume Degruyter
Press, Berlin.

Bier, E. A., Stone, M. C., Pier, K., Buxton, W., & DeRose, T. D. (1993). Toolglass and
magic lenses: The see-through interface. SIGGRAPH ‘93 Proceedings of the 20th
annual conference on Computer graphics and interactive techniques (pp. 73–80).
New York, New York, USA: ACM.

Bostock, Michael, Vadim Ogievetsky, And Jeffrey Heer, 2011. D³ Data Driven
Documents. Volume Visualization And Computer Graphics, Ieee Transactions On
17, No. 12., Pp. 2301-2309.

Brandl, P., Haller, M., Oberngruber, J., & Schafleitner, C. (2008). Bridging the gap
between real printouts and digital whiteboard (pp. 31–38). In Proceedings of the
working conference on Advanced visual interfaces.

Branham, S., Golovchinsky, G., Carter, S., & Biehl, J. T. (2010). Let’s go from the
whiteboard: supporting transitions in work through whiteboard capture and reuse
(pp. 75–84). In Proceedings of the 28th international conference on Human factors
in computing systems.

Brosterman, N., K. Togashi, and E. Himmel. 1997. “Inventing Kindergarten.”
Retrieved June 12, 2013 (http://www.getcited.org/pub/100128705).

Browne, J., Lee, B., Carpendale, S., Riche, N., & Sherwood, T. (2011). Data analysis
on interactive whiteboards through sketch-based interaction (p. 154). In ITS ‘11:
Proceedings of the ACM International Conference on Interactive Tabletops and
Surfaces, New York, New York, USA: ACM.

Buhrdorf, R., Churchett, D., and Krueger, C., Salion’s Experience with a Reactive
Software Product Line Approach, Revised Papers of the 5th International Workshop,
PFE 2003, Siena, Italy, November 4-6, 2003.

Buxton Bill Sketching User Experiences [Book]. - [s.l.] : Morgan Kaufmann, 2007.

Buxton, B. (2010). Sketching user experiences: getting the design right and the right
design: getting the design right and the right design: Morgan Kaufmann.

424

Cairo, Alberto. 2014. “The Island of Knowledge and the Shorelines of Wonder.”
Keynote IEEE VIS 2014. Retrieved October 19, 2015 (http://ieeevis.org/year/2014/
info/overview-amp-topics/keynote-and-capstone).

Carbon, R., Lindvall, M., Muthig, D., and Costa, P., Integrating PLE and agile
methods: flexible design up-front vs. incremental design”, The 1st International
Workshop on APLE, 2006 - SPLC.

Card, S. K., Mackinlay, J. D. & Shneiderman, B., 1999. Readings In Information
Visualization : Using Vision To Think. Volume Morgan-Kaufmann: San.

Chapman, Michael. 1988. Constructive Evolution: Origins and Development of
Piaget’s Thought. Cambridge University Press. Retrieved August 23, 2013 (http://
books.google.com/books?hl=en&lr=&id=7WgCnXmdX1MC&pgis=1).

Cheema, S., Gulwani, S., & LaViola, J. (2012). QuickDraw: improving drawing
experience for geometric diagrams (p. 1037). In CHI ‘12: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, New York, New York, USA:
ACM.

Cherubini, M., Venolia, G., DeLine, R., & Ko, A. J. (2007). Let’s go to the whiteboard:
how and why software developers use drawings (pp. 557–566). In CHI ‘07:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
New York, New York, USA: ACM.

Clegg, K., Kelly, T., McDermid, J., Incremental Product-Line Development,
International Workshop on PLE, Seattle, 2002.

Clements, P., and Northrop, L., Software Product Lines: Practice and Patterns,
Addison-Wesley, 2001.

Constantine, L. (2004). Beyond user-centered design and user experience: Designing
for user performance. Cutter IT Journal, 17(2), 16-25.

Cooper, K., and Franch, X., “APLE 1st International Workshop on Agile Product Line
Engineering”, SPLC, 2006.

Chul Kwon, Bum, Brian Fisher, And Ji Soo Yi., 2011. Visual Analytics Roadblocks For
Novice Investigators. Volume Visual Analytics Science And Technology (Vast). Ieee
Conference On. Ieee., Pp. 3-11.

Cockburn, Alistair, And Laurie Williams., 2000. The Costs And Benefits Of Pair
Programming.. Volume Extreme Programming Examined, Pp. 223-247.

de Souza Alcantara, T. (2013). Designing Tabletop and Surface Applications Using
Interactive Prototypes.

de Souza Alcantara, T., Ferreira, J., & Maurer, F. (2013). Interactive prototyping of
tabletop and surface applications. Paper presented at the Proceedings of the 5th
ACM SIGCHI symposium on Engineering interactive computing systems.

Derboven, J., De Roeck, D., Verstraete, M., Geerts, D., & De Grooff, D. (2010). Low-
Fidelity Prototyping for Multi-Touch Surfaces. status: published.

Dix, A., 1998. Evaluation Techniques. Volume Human-Computer Interaction. Europe,
Prentice-Hall, Pp. 405-442.

Dreamweaver CS4. Retrieved from http://tv.adobe.com/show/learn-dreamweaver-
cs4/.

ForeUI: Easy to use UI prototyping tool. . Retrieved from http://www.foreui.com/

Forlines, Clifton, And Chia Shen, 2005. Dtlens: Multi - User Tabletop Spatial Data
Exploration. Volume Proceedings Of The 18th Annual Acm Symposium On User

425

Interface Software And Technology. Acm., Pp. 119-122.

Forlines, Clifton, And Ryan Lilien., 2008. Adapting A Single-User, Single-Display
Molecular Visualization Application For Use In A Multi-User Multi-Display
Environment. Volume Proceedings Of The Working Conference On Advanced Visual
Interfaces. Acm., Pp. 367-371.

Gerken, J., Jetter, H.-C., Schmidt, T., & Reiterer, H. (2010). Can touch get annoying?
Paper presented at the ACM International Conference on Interactive Tabletops and
Surfaces.

GestureWorks, a multitouch application framework for Adobe Flash and Flex.
Retrieved from http://gestureworks.com/.

Ghanam, Y., and Maurer, F., Linking Feature Models to Code Artifacts using
Executable Acceptance Tests, to appear in the proceedings of the 14th International
Software Product Line Conference (SPLC 2010), South Korea, September 2010.

Grammel, Lars, Chris Bennett, Melanie Tory, and Margaret-anne Storey. 2013.
“A Survey of Visualization Construction User Interfaces.” webhome.cs.uvic.ca
1–5. Retrieved June 27, 2013 (http://webhome.cs.uvic.ca/~mtory/publications/
VisToolSurvey-eurovis13-short.pdf).

Grammel, Lars, Melanie Tory, and Margaret-Anne Storey. 2010. “How Information
Visualization Novices Construct Visualizations.” IEEE transactions on visualization
and computer graphics 16(6):943–52. Retrieved September 18, 2013 (http://www.
ncbi.nlm.nih.gov/pubmed/20975131).

Hanssen, G., and Fægri, T., Process Fusion: An Industrial Case Study on Agile
Software Product Line Engineering, special Issue of Journal of Systems and Software
(JSS), 2008.

Heer, Jeffrey, Stuart K. Card, And James A. Landay., 2005. Prefuse: A Toolkit
For Interactive Information Visualization. Volume In Proceedings Of The Sigchi
Conference On Human Factors In Computing Systems. Acm., Pp. 421-430.

Heer, J. Et Al., 2008. Creation And Collaboration: Engaging New Audiences For
Information Visualization.. Volume In Information Visualization. Springer Berlin
Heidelberg., Pp. 92-133.

Heer, J. and B. Shneiderman. 2012. “Interactive Dynamics for Visual Analysis.” 1–26.
Retrieved July 3, 2013 (http://dl.acm.org/citation.cfm?id=2146416).

Hellmann T.D. [et al.] An Exploratory Study of Automated GUI Testing: Goals, Issues,
and Best Practices [Report] : Technical Report. - Calgary : University of Calgary, 2014.
- 2014-1057-08.

Hellmann Theodore D. Automated GUI Testing for Agile Development Environments
[Report] : PhD Thesis. - Calgary : University of Calgary, 2015.

Hellmann Theodore D., Hosseini-Khayat Ali and Maurer Frank Supporting Test-
Driven Development of Graphical User Interfaces using Agile Interaction Design
[Conference] International Workshop on Test-Driven Development . Paris: [s.n.],
2010.

Hellmann Theodore D., Hosseini-Khayat Ali and Maurer Frank Test-Driven
Development of Graphical User Interfaces: A Pilot Evaluation [Conference] // Agile
Processes and eXtreme Programming. Madrid: [s.n.], 2011.

Hesselmann, T., Boll, S., & Heuten, W. (2011). SCIVA: designing applications for
surface computers. Paper presented at the Proceedings of the 3rd ACM SIGCHI
symposium on Engineering interactive computing systems.

426

Hinrichs, U., & Carpendale, S. (2011). Gestures in the wild: studying multi-touch
gesture sequences on interactive tabletop exhibits. Paper presented at the
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.

Holzmann, C., & Vogler, M. (2012). Building interactive prototypes of mobile user
interfaces with a digital pen. Paper presented at the Proceedings of the 10th asia
pacific conference on Computer human interaction.

Hosseini-Khayat Ali Distributed Wizard of Oz Usability Testing for Agile Teams
[Report] : Master’s Thesis / University of Calgary. - Calgary : [s.n.], 2010.

Hosseini-Khayat Ali, Hellmann Theodore D. and Maurer Frank Distributed and
Automated Usability Testing of Low-Fidelity Prototypes [Conference] // Agile
Conference. - Orlando : [s.n.], 2010.

Huron, Samuel, Sheelagh Carpendale, Alice Thudt, Anthony Tang, and Michael
Mauerer. 2014. “Constructive Visualization.” Pp. 433–42 in Proceedings of the
2014 conference on Designing interactive systems - DIS ’14. New York, New
York, USA: ACM Press. Retrieved October 19, 2015 (http://dl.acm.org/citation.
cfm?id=2598510.2598566).

Huron, Samuel, Yvonne Jansen, and Sheelagh Carpendale. 2014. “Constructing
Visual Representations: Investigating the Use of Tangible Tokens.” IEEE transactions
on visualization and computer graphics 20(12):2102–11. Retrieved October 19,
2015 (http://www.ncbi.nlm.nih.gov/pubmed/26356924).

iPlotz: Wireframes, mockups and prototyping for websites. Retrieved from http://
iplotz.com/.

Isenberg, Petra, And Carpendale, Sheelagh, 2007. Interactive Tree Comparison
For Co-Located Collaborative Information Visualization. Volume Visualization And
Computer Graphics, Ieee Transactions On 13, No. 6., Pp. 1232-1239.

Isenberg, Petra, And Danyel Fisher., 2009. Collaborative Brushing And Linking For
Co-Located Visual Analytics Of Document Collections. Volume Computer Graphics
Forum. Vol. 28. No. 3. Blackwell Publishing Ltd., Pp. 1031-1038.

Isenberg, P. Et Al., 2011. Collaborative Visualization: Definition, Challenges, And
Research Agenda. Volume Information Visualization 10, No. 4., Pp. 310-326.

Isenberg, P. Et Al., 2010. An Exploratory Study Of Co-Located Collaborative Visual
Analytics Around A Tabletop Display.. Volume In Visual Analytics Science And
Technology (Vast), Ieee Symposium, Pp. 179-186.

Jansen, W. 2009. “Neurath, Arntz and ISOTYPE: The Legacy in Art, Design and
Statistics.” Journal of Design History 22(3):227–42. Retrieved January 21, 2013
(http://jdh.oxfordjournals.org/cgi/doi/10.1093/jdh/epp015).

Jansen, Yvonne and Pierre Dragicevic. 2013. “An Interaction Model for Visualizations
Beyond The Desktop.” IEEE Transactions on Visualization and Computer Graphics
19(12):2396–2405. Retrieved (http://hal.inria.fr/hal-00847218).

Jeffries, Robin and Desurvire, Heather. Usability Testing vs. Heuristic Evaluation: Was
There A Contest? [Journal] ACM SIGCHI Bulletin. - 1992. - 4 : Vol. 24. - pp. 39-41.

Jeffries, Ron and Melnik, Grigori. Guest Editors’ Introduction: TDD - The Art of
Fearless Programming [Journal] IEEE Software. - May-June 2007. - 3 : Vol. 24. - pp.
24-30.

Chris Johnson, Robert Moorhead, Tamara Munzner, Hanspeter Pfister, Penny
Rheingans, Terry S. Yoo. 2006. NIH/NSF Visualization Research Challenges
Report. Retrieved October 19, 2015 (http://citeseerx.ist.psu.edu/viewdoc/

427

summary?doi=10.1.1.72.5285).

Ju, W., Lee, B. A., & Klemmer, S. R. (2008). Range: exploring implicit interaction
through electronic whiteboard design (pp. 17–26). In Proceedings of the ACM 2008
conference on Computer supported cooperative work.

Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A., FODA Feasibility Study,
SEI Technical Report, 1990.

Khandkar, S. H., & Maurer, F. (2010). A domain specific language to define gestures
for multi-touch applications. Paper presented at the Proceedings of the 10th
Workshop on Domain-Specific Modeling.

Kin, K., Hartmann, B., DeRose, T., & Agrawala, M. (2012). Proton: multitouch
gestures as regular expressions. Paper presented at the Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.

Kirsh, D. (2010). Thinking with external representations. AI & Society, 25(4), 441–454.

Kolodner, Janet L., David Crismond, Jackie Gray, Jennifer Holbrook, And Sadhana
Puntambekar, 1998. Learning By Design From Theory To Practice. Volume In
Proceedings Of The International Conference Of The Learning Sciences.

Krippendorff, K. (2006). The semantic turn: a new foundation for design. ARTIFACT-
ROUTLEDGE-, 1(11), 51.

Kruger, C., Easing the Transition to Software Mass Customization, in Proceedings
of the 4th International Workshop on Product Family Engineering, Germany, 2002.

Landay, J. A. (1996). SILK: sketching interfaces like krazy (pp. 398–399). In CHI ‘96:
Conference companion on Human factors in computing systems, ACM.

Lao, S., Heng, X., Zhang, G., Ling, Y., & Wang, P. (2009). A gestural interaction
design model for multi-touch displays. Paper presented at the Proceedings of the
23rd British HCI Group Annual Conference on People and Computers: Celebrating
People and Technology.

Lee, B., Kazi, R. H., & Smith, G. (2013). SketchStory: Telling More Engaging Stories
with Data through Freeform Sketching. IEEE Transactions on Visualization and
Computer Graphics, 19(12).

Lee, B., Smith, G., Riche, N. H., & Karlson, A. (2015). SketchInsight: Natural data
exploration on interactive whiteboards leveraging pen and touch interaction. IEEE
Symposium on InfoVis, 199–206.

Leffingwell, D., Scaling Software Agility: Best Practices for Large Enterprises,
Addison-Wesley Professional, 1st edition, 2007.

Lim, Y.-K., Stolterman, E., & Tenenberg, J. (2008). The anatomy of prototypes:
Prototypes as filters, prototypes as manifestations of design ideas. ACM Transactions
on Computer-Human Interaction (TOCHI), 15(2), 7.

Lin, J. (1999). A visual language for a sketch-based UI prototyping tool. Paper
presented at the CHI’99 extended abstracts on Human factors in computing systems.

Long Jr, A. C., Landay, J. A., & Rowe, L. A. (1999). Implications for a gesture design
tool. Paper presented at the Proceedings of the SIGCHI conference on Human
Factors in Computing Systems.

Lloyd, David, And Jason Dykes, 2011. Human-Centred Approaches In
Geovisualization Design: Investigating Multiple Methods Through A Long-Term
Case Study. Volume Visualization And Computer Graphics, Ieee Transactions On 17,
No. 12, Pp. 2498-2507.

428

Lyons, K., Brashear, H., Westeyn, T., Kim, J. S., & Starner, T. (2007). Gart: The gesture
and activity recognition toolkit Human-Computer Interaction. HCI Intelligent
Multimodal Interaction Environments (pp. 718-727): Springer.

Mackinlay, J. D., Hanrahan, P. & Stolte , C., 2007. Show Me: Automatic Presentation
For Visual Analysis. Volume Visualization And Computer Graphics, Ieee Transactions
On 13, No. 6., Pp. 1137-1144.

Mangano, N., LaToza, T. D., Petre, M., & van der Hoek, A. (2014). Supporting
Informal Design with Interactive Whiteboards. In CHI ‘14 Proceedings of The 32nd
Annual ACM SIGCHI Conference on Human Factors in Computing Systems, 1–10.

Manning, JP. 2005. “Rediscovering Froebel: A Call to Re-Examine His Life & Gifts.”
Early Childhood Education Journal. Retrieved June 12, 2013 (http://link.springer.
com/article/10.1007/s10643-005-0004-8).

Mark, G., Kobsa, A. & Gonzalez, V., 2002. Do Four Eyes See Better Than Two?
Collaborative Versus Individual Discovery In Data Visualization Systems. Volume
Information Visualisation. Proceedings. Sixth International Conference On. Ieee.,
Pp. 249-255.

McCurdy, M., Connors, C., Pyrzak, G., Kanefsky, B., & Vera, A. (2006). Breaking the
fidelity barrier: an examination of our current characterization of prototypes and
an example of a mixed-fidelity success. Paper presented at the Proceedings of the
SIGCHI conference on Human Factors in computing systems.

McGregor, J., Agile Software Product Lines, Deconstructed, Journal of Object
Technology, 7(8), 2008.

Memmel, T., Gundelsweiler, F., & Reiterer, H. (2007). Agile human-centered software
engineering. Proceedings of the 21st British HCI Group Annual Conference on
People and Computers: HCI... but not as we know it-Volume 1.

Microsoft Sketchflow. Retrieved from http://www.microsoft.com/expression/
products/sketchflow_overview.aspx.

Microsoft Surface User Experience Guidelines. Retrieved from http://www.microsoft.
com/en-ca/download/confirmation.aspx?id=19410.

Mockingbird: Wireframes on the fly. Retrieved from https://gomockingbird.com/.

Moggridge, B., & Atkinson, B. (2007). Designing interactions (Vol. 14): MIT press
Cambridge.

Moran, T. P., & Van Melle, W. (2000). Tivoli: Integrating structured domain objects
into a freeform whiteboard environment (p. 21). In CHI’00 extended abstracts on
Human factors in computing systems.

Morris, M. R., Wobbrock, J. O., & Wilson, A. D. (2010). Understanding users’
preferences for surface gestures. Paper presented at the Proceedings of graphics
interface 2010.

Mynatt, E. D. (1999). The writing on the wall. In Proceedings of the 7th IFIP
Conference on Human-Computer Interaction.

Mynatt, E. D., Igarashi, T., Edwards, W. K., & LaMarca, A. (1999). Flatland: new
dimensions in office whiteboards (pp. 346–353). In CHI ‘99: Proceedings of the
SIGCHI conference on Human Factors in Computing Systems, New York, New York,
USA: ACM. http://doi.org/10.1145/302979.303108.

Neurath, Marie. 2009. The Transformer: Principles of Making Isotype Charts.
Princeton Architectural Press. Retrieved September 16, 2013 (http://books.google.

429

com/books?id=k6lmNAAACAAJ&pgis=1).

Neurath, Otto and Red Vienna. 2009. “Isotype Representing Social Facts Pictorially.”
(June).

Norman, D. A. (2007). The design of future things: Author of the design of everyday
things.

Norman, D. A., & Nielsen, J. (2010). Gestural interfaces: a step backward in usability.
Interactions, 17(5), 46-49.

North, C., Dwyer, T., Lee, B., Fisher, D., Isenberg, P., Robertson, G., & Inkpen, K.
(2009). Understanding multi-touch manipulation for surface computing Human-
Computer Interaction–INTERACT 2009 (pp. 236-249): Springer.

Novak, Joseph D., And Alberto J. Cañas., 2008. The Theory Of Underlying Concept
Maps And And How To Construct And Use Them. Volume Florida Institute For
Human And Machine Cognition Pensacola Fl, Www. Ihmc. Us., P. 284.

Obrenovic, Ž., & Martens, J.-B. (2011). Sketching interactive systems with sketchify.
ACM Transactions on Computer-Human Interaction (TOCHI), 18(1), 4.

Papert, S. and I. Harel. 1991. “Situating Constructionism.” Constructionism. Retrieved
June 17, 2013 (http://namodemello.com.br/pdf/tendencias/situatingconstrutivism.
pdf).

Paige, R., Xiaochen, W., Stephenson, Z., and Phillip J., Towards an Agile Process for
Building Software Product Lines, XP 2006, 198 – 199.

Pencil: Add-on for Mozilla Firefox. Retrieved from https://addons.mozilla.org/en-
US/firefox/addon/pencil/.

Perin, Charles, Pierre Dragicevic, and Jean-Daniel Fekete. 2014. “Revisiting Bertin
Matrices: New Interactions for Crafting Tabular Visualizations.” IEEE Transactions on
Visualization and Computer Graphics 20(12):2082–91. Retrieved October 19, 2015
(https://hal.inria.fr/hal-01023890).

Piaget, Jean. 1989. Six {é}tudes de Psychologie. Ed. Deno{ë}l.

Plimmer, B., Blagojevic, R., Chang, S. H.-H., Schmieder, P., & Zhen, J. S. (2012). RATA:
codeless generation of gesture recognizers. Paper presented at the Proceedings
of the 26th Annual BCS Interaction Specialist Group Conference on People and
Computers.

Pretorius, J. A. & Wijk, V. J., 2009. What Does The User Want To See? What Do The
Data Want To Be?. Volume Information Visualization 8, No. 3, Pp. 153-166.

Price, Richard H., and Dennis L. Bouffard. “Behavioral appropriateness and
situational constraint as dimensions of social behavior.” Journal of Personality and
Social Psychology 30.4 (1974): 579.

Proto.io : Silly-fast mobile prototyping. Retrieved from http://proto.io/.

Reas, Casey and Ben Fry. 2007. Processing: A Programming Handbook for Visual
Designers and Artists. Retrieved October 19, 2015 (https://books.google.com/
books?hl=fr&lr=&id=tqW75bfJkxIC&pgis=1).

Reas, C. & Fry, B., 2014. Processing: A Programming Handbook For Visual Designers
And Artists. S.L.:Mit Press.

Robertson, S., & Robertson, J. (2012). Mastering the requirements process: Getting
requirements right: Addison-wesley.

430

Rudd, J., Stern, K., & Isensee, S. (1996). Low vs. high-fidelity prototyping debate.
interactions, 3(1), 76-85.

Schmid, K., and Verlage, M., The Economic Impact of Product Line Adoption and
Evolution, IEEE Software, 19 (4), pp. 50-57, 2002.

Sedlmair, M., Meyer, M. & Munzner, T., 2012. Design Study Methodology: Reflections
From The Trenches And The Stacks. Volume Visualization And Computer Graphics,
IEEE Transactions On 18, No. 12, Pp. 2431-2440.

Sefelin, R., Tscheligi, M., & Giller, V. (2003). Paper prototyping-what is it good for?: a
comparison of paper-and computer-based low-fidelity prototyping. Paper presented
at the CHI’03 extended abstracts on Human factors in computing systems.

Segura, V. C., Barbosa, S. D., & Simões, F. P. (2012). UISKEI: a sketch-based
prototyping tool for defining and evaluating user interface behavior. Paper presented
at the Proceedings of the International Working Conference on Advanced Visual
Interfaces.

Sinha, A. K., & Landay, J. A. (2003). Capturing user tests in a multimodal, multidevice
informal prototyping tool. Paper presented at the Proceedings of the 5th international
conference on Multimodal interfaces.

Shalloway, A., Beaver, G., and Trott, J., Lean-Agile Software Development: Achieving
Enterprise Agility, Addison-Wesley Professional, 1st edition, 2009.

Smith, J. D., & Graham, T. (2010). Raptor: sketching games with a tabletop computer.
Paper presented at the Proceedings of the International Academic Conference on
the Future of Game Design and Technology.

Statistics, C., 2013. Canada’s Disaster Data. [Online] Available At: Http://Www.
Statcan.Gc.Ca/Start-Debut-Eng.Html

Strauss, A., & Corbin, J. (1998). Basics of qualitative research: Grounded theory
procedures and techniques (2nd ed.). Newbury Park, CA: Sage publications.

Stuart K. Card, Jock D. Mackinlay, Ben Shneiderman. 1999. Readings in Information
Visualization: Using Vision to Think. Morgan Kaufmann. Retrieved September 18,
2013.

Stusak, S., 2009. Collaboration In Information Visualization. Volume Trends In
Information Visualization., P. 46.

Sutherland, I. E., & Sketchpad, A. (1963). A man-machine graphical communication
system (Vol. 23, pp. 329–346). In Proc. of AFIPS Spring Joint Comp. Conf.

T.I.B.C.O, 2014. Spotfire-Business Intelligence Analytics Software & Data
Visualization. [Online] Available At: Http://Www. Http://Spotfire.Tibco.Com
[Accessed 20 11 2013].

Tang, A. Et Al., 2006. Collaborative Coupling Over Tabletop Displays. Volume In
Proceedings Of The Sigchi Conference On Human Factors In Computing Systems.,
Pp. 1181-1190.

Tang, A., Lanir, J., Greenberg, S., & Fels, S. (2009). Supporting transitions in work:
informing large display application design by understanding whiteboard use. In
Proceedings of the ACM 2009 international conference on Supporting group work
(pp. 149-158). ACM.

Tobiasz, Matthew, Petra Isenberg, And Sheelagh Carpendale., 2009. Lark:
Coordinating Co-Located Collaboration Wih Information Visualization. Volume
Visualization And Computer Graphics, IEEE Transactions On 15, No. 6., Pp. 1065-

431

1072.

Tufte, Edward R., And P. R. Graves-Morris., 1983. The Visual Display Of Quantitative
Information. S.L.:Vol. 2. Cheshire, Ct: Graphics Press.

Tversky, B. (2008). Making thought visible In Proceedings of the International
Workshop on Studying Design Creativity. The Netherlands: Springer (Vol. 1, No.
2.1, pp. 2-2).

Unger, R., & Chandler, C. (2012). A Project Guide to UX Design: For user experience
designers in the field or in the making: New Riders.

Van den Bergh, J., Sahni, D., Haesen, M., Luyten, K., & Coninx, K. (2011). GRIP: get
better results from interactive prototypes. Paper presented at the Proceedings of
the 3rd ACM SIGCHI symposium on Engineering interactive computing systems.

Van Wijk, J. J., 2006. Bridging The Gaps. Volume Computer Graphics And
Applications, IEEE 26, No. 6., Pp. 6-9.

Victor, Brett. 2013. “Drawing Dynamic Visualizations.” Retrieved (http://worrydream.
com/#!/DrawingDynamicVisualizationsTalk).

Virzi, R. A., Sokolov, J. L., & Karis, D. (1996). Usability problem identification using
both low-and high-fidelity prototypes. Paper presented at the Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems.

Walny, J., Bongshin Lee, P. Johns, N. H. Riche, and S. Carpendale. 2012.
“Understanding Pen and Touch Interaction for Data Exploration on Interactive
Whiteboards.” Visualization and Computer Graphics, IEEE Transactions on
18(12):2779–88.

Walny, J., Carpendale, S., Riche, N. H., Venolia, G., & Fawcett, P. (2011). Visual
Thinking In Action: Visualizations As Used On Whiteboards. Visualization and
Computer Graphics, IEEE Transactions on, 17(12), 2508–2517.

Walny, J., Haber, J., Dörk, M., Sillito, J., & Carpendale, S. (2011). Follow that sketch:
Lifecycles of diagrams and sketches in software development (pp. 1–8). IEEE.

Walny, J., Huron, S., & Carpendale, S. (2015). An Exploratory Study of Data Sketching
for Visual Representation. Comput. Graph. Forum (), 34(3), 231–240. http://doi.
org/10.1111/cgf.12635

Walny, J., Lee, B., Johns, P., & Riche, N. H. (2012). Understanding pen and touch
interaction for data exploration on interactive whiteboards. IEEE Trans Vis Comput
Graph, 18(12), 2779–2788.

Wiethoff, A., Schneider, H., Rohs, M., Butz, A., & Greenberg, S. (2012). Sketch-a-
TUI: low cost prototyping of tangible interactions using cardboard and conductive
ink. Paper presented at the Proceedings of the Sixth International Conference on
Tangible, Embedded and Embodied Interaction.

Williams, L., Kessler, R., 2001. Pair Programming Illuminated, Addison-Wesley
Professional

Windows Presentation Foundation. Retrieved from http://msdn.microsoft.com/en-
us/library/ms754130.aspx,

Wobbrock, J. O., Morris, M. R., & Wilson, A. D. (2009). User-defined gestures for
surface computing. Paper presented at the Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems.

432

BUILDING INFRASTRUCTURE FOR DIGITAL SURFACES

T. Ariga and K. Mori. Sensory vision—development of a course for physical interaction
and graphics. Comput. & Graph., 34(6):800–810, 2010.

Ashdown, M., Oka, K., and Sato, Y., Combining head tracking and mouse input for
a GUI on multiple monitors. Proc. CHI 2005, 1188-1191.

Ballendat, T., Marquardt, N. and Greenberg, S. (2010). Proxemic interaction:
designing for a proximity and orientation-aware environment. In Proceedings of the
International Conference on Interactive Tabletops and Surfaces – ITS ’10 (pp. 121-
130). New York, NY, USA: ACM Press.

Baudisch, P., Cutrell, E., Hinckley, K. and Gruen, R., Mouse Ether: Accelerating the
Acquisition of Targets Across Multi-Monitor Displays. Proc. CHI 2004, 1379-1382.

Baudisch, P., Good, N., and Stewart, P. Focus plus context screens: combining
display technology with visualization techniques. Proc. UIST ‘01, 31-40.

Baudisch, P., and Rosenholtz, R., Halo: A Technique for Visualizing Off-Screen
Locations. Proc. CHI 2003, 48-488.

Benko, H. & Feiner, S., Pointer Warping in Heterogeneous Multi-Monitor
Environments. Proc. Graphics Interface, 2007, 111-117.

Benko, H. & Feiner, S., Multi-Monitor Mouse. Proc. CHI 2005, 1208-1211.

Biehl, J. and Bailey, B. ARIS: an interface for application relocation in an interactive
space. Proc. Graphics Interface 2004, 107-116.

Birnholtz, J., Reynolds, L., Luxenberg, E., Gutwin, C., and Mustafa, M., Awareness
Beyond The Desktop: Exploring Attention And Distraction With A Projected
Peripheral-vision Display, Proc. Graphics Interface 2010, 55-62.

A. Blackwell. Cognitive dimensions of notations resource site. http://www.cl.cam.
ac.uk/afb21/CognitiveDimensions/. Last accessed January, 2015.

A. Blackwell and T. Green. A Cognitive Dimensions Questionnaire, 5.7 edition, 2007.

Bolt, Richard A., “Put-that-there”: Voice and gesture at the graphics interface. Proc.
SIGGraph 1980, 262-270.

Brumitt, B., Meyers, B., Krumm, J., Kern, A. and Shafer, S. A. (2000). EasyLiving:
Technologies for Intelligent Environments. In Proceedings of the 2nd international
symposium on Handheld and Ubiquitous Computing - UbiComp ’00 (pp.12-29).
London, UK: Springer-Verlag.

Y.-L. Chang, S. D. Scott, and M. Hancock. Supporting situation awareness in
collaborative tabletop systems with automation. In Proc. ITS, pages 185-194, ACM
Press, 2014.

Chen, X. A., Grossman, T., Wigdor, D. J. and Fitzmaurice, G. (2014). Duet: exploring
joint interactions on a smart phone and a smart watch. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems - CHI ’14 (pp.159-168). New
York, NY, USA: ACM Press.

Chi, P. and Li, Y. (2015). Weave: Scripting Cross-Device Wearable Interaction. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems - CHI ’15 (pp. 3923-3932). New York, NY, USA. ACM Press.

A. Dai, R. Sadana, C. D. Stolper, and J. Stasko, Hands-on, large display visual data
exploration, In Poster Proc. of IEEE InfoVis, 2015.

433

Ebert, A., Thelen, S., Olech, P.-S., Meyer, J., Hagen, H. Tiled++: An Enhanced Tiled
Hi-Res Display Wall. IEEE TVCG Jan/Feb 2010, 120-132.

A. Gokcezade, J. Leitner, and M. Haller. LightTracker: An open-source multitouch
toolkit. Comput. Entertain., 8(3):19:1–19:16, 2010.

Greenberg, S., Marquardt, N., Ballendat, T., Diaz-Marino, R. and Wang, M. (2011).
Proxemic interactions: the new ubicomp? interactions, (Vol.18, pp. 42-50). New
York, NY, USA. ACM Press.

Gustafson, S., Baudisch, P., Gutwin, C, and Irani, P., Wedge: Clutter-Free Visualization
of Off-Screen Locations, Proc. CHI 2008, 787-796.

T. E. Hansen, J. P. Hourcade, M. Virbel, S. Patali, and T. Serra. PyMT: A post-WIMP
multi-touch user interface toolkit. In Proc. ITS, pages 17–24. ACM Press, 2009.

Hamilton, P. and Wigdor, D. J. (2014). Conductor: enabling and understanding cross-
device interaction. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems - CHI ’14 (pp.2773-2782). New York, NY, USA. ACM Press.

Hinckley, K. (2003). Synchronous gestures for multiple persons and computers.
In Proceedings of the 16th annual ACM symposium on User interface software
and technology – UIST’03 (pp. 149-158). New York, NY, USA. ACM Press. doi:
10.1145/964696.964713

Hinckley, K., Ramos, G., Guimbretiere, F., Baudisch, P., and Smith, M., Stitching: pen
gestures that span multiple displays. Proc. AVI 2004, 23-31.

E. Hornecker and T. Psik. Using ARToolkit markers to build tangible prototypes and
simulate other technologies. In Proc. INTERACT, pages 30–42. Springer-Verlag,
2005.

Houben, S. and Marquardt, N. (2015). WatchConnect: A Toolkit for Prototyping
Smartwatch-Centric Cross-Device Applications. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems - CHI’15 (pp.1247-1256). New
York, NY, USA. ACM Press.

M. Jain. Multi-touch technology, applications and global markets. Technical Report
SMC088A, BCC Research, 2014.

Johnson, T., and Fuchs, H. A Unified Multi-Surface, Multi-Resolution Workspace
with Camera-Based Scanning and Projector-Based Illumination, Proc. IPT-EGVE
Symposium, 2007.

Jota, R., Nacenta, M., Jorge, J., Carpendale, S., and Greenberg, S., A comparison
of ray pointing techniques for very large displays. Proc. Graphics Interface 2010,
269-276.

M. Kaltenbrunner. reacTIVision and TUIO: A tangible tabletop toolkit. In Proc. ITS,
pages 9–16. ACM Press, 2009.

D. Kammer, M. Keck, G. Freitag, and M. Wacker. Taxonomy and overview of multi-
touch frameworks: Architecture, scope and features. In Workshop on Eng. Patterns
for Multi-Touch Interfaces, EICS, 2010.

S. H. Khandkar, S. M. Sohan, J. Sillito, and F. Maurer. Tool support for testing complex
multi-touch gestures. In Proc. ITS, pages 59–68. ACM Press, 2010.

S. Kobayashi, T. Endo, K. Harada, and S. Oishi. GAINER: a reconfigurable I/O
module and software libraries for education. In Proc. NIME, pages 346–351, 2006.

König, A., Rädle, R. and Reiterer, H. (2009). Squidy: a zoomable design environment
for natural user interfaces. In Extended Abstracts on Human Factors in Computing

434

Systems - CHI’EA’09 (pp.4561-4566). New York, NY, USA. ACM Press.

W. A. König, R. Rädle, and H. Reiterer. Interactive design of multimodal user
interfaces. J. on Multimodal User Interfaces, 3(3):197–213, 2010.

U. Laufs, C. Ruff, and J. Zibuschka. MT4j - a cross-platform multi-touch development
framework. In Workshop on Eng. Patterns for Multi-Touch Interfaces, EICS, 2010.

I. Leftheriotis, K. Chorianopoulos, and L. Jaccheri. Tool support for developing
scalable multiuser applications on multi-touch screens. In Proc. ITS, pages 371–374.
ACM Press, 2012.

Lucero, A., Keränen, J. and Korhonen, H. (2011). Collaborative use of mobile
phones for brainstorming. In Proceedings of the International Conference on Human
Computer Interactions with Mobile Devices and Services – MobileHCI’10 (pp.337-
340). New York, NY, USA. ACM Press.

J. Luderschmidt, I. Bauer, N. Haubner, S. Lehmann, R. Dörner, and U. Schwanecke.
TUIO AS3: A multi-touch and tangible user interface rapid prototype toolkit for
tabletop interaction. In ITG/GI Workshop on SENSYBLE, pages 21–28. Shaker
Aachen, 2010.

J. Marco, E. Cerezo, and S. Baldassarri. ToyVision: A toolkit for prototyping tabletop
tangible games. In Proc. EICS, pages 71–80. ACM Press, 2012.

Marquardt, N., Ballendat, T., Boring, S., Greenberg, S. and Hinckley, K. (2012).
Gradual engagement: facilitating information exchange between digital devices as
a function of proximity. In Proceedings of the International Conference on Interactive
Tabletops and Surfaces – ITS’12 (pp.31-40). New York, NY, USA. ACM Press.

Marquardt, N., Diaz-Marino, R., Boring, S. and Greenberg, S. (2011). The proximity
toolkit: prototyping proxemic interactions in ubiquitous computing ecologies. In
Proceedings of the symposium on User interface software and technology – UIST’11
(pp.315-326). New York, NY, USA. ACM Press

Marquardt, N., Hinckley, K. and Greenberg, S. (2012) Cross-device interaction via
micro-mobility and f-formations. In Proceedings of the symposium on User interface
software and technology – UIST’12 (pp.3-22). New York, NY, USA. ACM Press.

M. Murshed and R. Buyya. Using the GridSim toolkit for enabling grid computing
education. In Int. Conf. on Commun. Networks and Distributed Syst. Modeling and
Simulation, pages 27–31, 2002.

Myers, B., Bhatnagar, R., Nichols, J., Peck, C., Kong, D., Miller, R., and Long, A.,
Interacting at a distance: measuring the performance of laser pointers and other
devices. Proc. CHI 2002, 33-40.

Nacenta, M., Gutwin, C., Aliakseyeu, D., and Subramanian, S., There and Back
again: Cross-Display Object Movement in Multi-Display Environments, JHCI, 24, 1,
2009, 170-229.

Nacenta, M., Mandryk, R., and Gutwin, C, Targeting across displayless space. Proc.
CHI 2008, 777-786.

Nacenta, M., Sakurai, S., Yamaguchi, T., Miki, Y., Itoh, Y., Kitamura, Y., Subramanian,
S. and Gutwin, C., E-conic: a Perspective-Aware Interface for Multi-Display
Environments. Proc. UIST 2007, 279-288.

Nacenta, M., Pinelle, D., Stuckel, D., and Gutwin, C., The Effects of Interaction
Technique on Coordination in Tabletop Groupware. Proc. Graphics Interface, 2007,
191-198.

435

Nacenta, M., Sallam, S., Champoux, B., Subramanian, S., and Gutwin, C., Perspective
cursor: perspective-based interaction for multi-display environments. Proc. CHI
2006, 289-298.

Nacenta, M., Computer Vision approaches to solve the screen pose acquisition
problem for Perspective Cursor, Report HCI-TR-06-01, Dept. of Computer Science,
University of Saskatchewan, 2006.

Nebeling, M., Mintsi, T., Husmann, M. and Norrie, M. (2014). Interactive development
of cross-device user interfaces. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems – CHI’14 (pp.2793-2802). New York, NY, USA. ACM
Press.

M. Nebeling and M. Norrie. jQMultiTouch: Lightweight toolkit and development
framework for multi-touch/multi-device web interfaces. In Proc. EICS, pages 61–70.
ACM Press, 2012.

Nebeling, M., Teunissen, E., Husmann, M. and Norrie, M. C. (2014). XDKinect:
development framework for cross-device interaction using kinect. In Proceedings
of the SIGCHI symposium on Engineering interactive computing systems – EICS’14
(pp.65-74). New York, NY, USA. ACM Press.

NUI Group Community. Community Core Vision (CCV). http://ccv.nuigroup.com/.
Last accessed on June, 7 2013.

D. R. Olsen, Jr. Evaluating user interface systems research. In Proc. UIST, pages
251–258. ACM Press, 2007.

E. Paluka and C. Collins, TandemTable: Supporting conversations and language
learning using a multi-touch digital table. In Proc. Graphics Interface, 2015.

Pinhanez, C., Kjeldsen, R., Levas, A., Pingali, G., Podlaseck, M., and Sukaviriya,
N., Applications of Steerable Projector-Camera Systems, Proc. ICCV Workshop on
Projector-Camera Systems (PROCAMS’03), 2003.

Pratte, S., Seyed, T., Maurer, F. (2015). Projected Pixels: Exploring Projection
Feedback in Multi-Surface Environments. In ITS 2015 Workshop on Collaboration
meets Interactive Surfaces – CmIS’15.

C. Reas and B. Fry. Processing 2: Overview. https://processing.org/overview/. Last
accessed on Oct 1, 2015.

C. Reas and B. Fry. Processing: A learning environment for creating interactive web
graphics. In ACM SIGGRAPH 2003 Web Graphics, New York, NY, USA, 2003. ACM.

C. Reas and B. Fry. Processing: Programming for the media arts. AI Soc., 20(4):
526–538, 2006.

Rekimoto, J. (1997). Pick-and-drop: a direct manipulation technique for multiple
computer environments. In Proceedings of the symposium on User interface
software and technology – UIST’97 (pp.31-39). New York, NY, USA. ACM Press.

Robertson, S., Wharton, C., Ashworth, C. & Franzke, M., Dual Device User Interface
Design: PDAs and Interactive Television. Proc. CHI 1996, 79-86.

Schreiner, M., Rädle, R., Hans-Christian, J. and Reiterer, H. (2015). Connichiwa: A
Framework for Cross-Device Web Applications. In Extended Abstracts on Human
Factors in Computing Systems - CHI’EA’15 (pp.2163-2168). New York, NY, USA.
ACM Press.

Seyed, T., Azazi, A., Chan, E., Wang, Y., and Maurer, F. (2015). SoD-Toolkit: A
Toolkit for Interactively Prototyping and Developing Multi-Sensor, Multi-Device

436

Environments. In Proceedings of the International Conference on Interactive
Tabletops and Surfaces – ITS’15 (pp.171-180). New York, NY, USA. ACM Press.

Seyed, T., Burns, C., Sousa, M. C., Maurer, F. and Tang, (2012). A. Eliciting usable
gestures for multi-display environments. In Proceedings of the International
Conference on Interactive Tabletops and Surfaces – ITS’12 (pp.41-50). New York,
NY, USA. ACM Press.

C. Shen, F. D. Vernier, C. Forlines, and M. Ringel. DiamondSpin: An extensible toolkit
for around-the-table interaction. In Proc. CHI, pages 167–174. ACM Press, 2004.

Su, R., and Bailey, B., Put Them Where? Towards Guidelines for Positioning Large
Displays in Interactive Workspaces, Proc. Interact 2005, 337-349.

L. Tang, Z. Yu, X. Zhou, H. Wang, and C. Becker. Supporting rapid design and
evaluation of pervasive applications: Challenges and solutions. Personal Ubiquitous
Comput., 15(3):253–269, 2011.

P. Tuddenham and P. Robinson. T3: Rapid prototyping of high-resolution and mixed-
presence tabletop applications. In TABLETOP, pages 11–18. IEEE Comput. Soc.,
2007.

Vogel, D., and Balakrishnan, R., (2004). Interactive public ambient displays:
transitioning from implicit to explicit, public to personal, interaction with multiple
users. Proceedings of the 17th annual ACM symposium on User interface software
and technology, 137-146.

Waldner, M., and Schmalstieg, D., Experiences with Mouse Control in Multi-Display
Environments, Proc. Workshop on coupled display visual interfaces at AVI 2010,
6-10.

Weiser, M. (2001). The computer for the 21st century. IEEE Pervasive Computing
(Vol.1, pp. 19-25). Piscataway, NJ, USA. IEEE Educational Activities Department.

Wilson, A. D. and Benko, H. (2010). Combining multiple depth cameras and
projectors for interactions on, above and between surfaces. In Proceedings of the
symposium on User interface software and technology – UIST’10 (pp.273-282).
New York, NY, USA. ACM Press.

Welch, G., Fuchs, H., Raskar, R., Towles, H., and Brown, M., Projected Imagery in
Your Office in the Future. IEEE Computer Graphics and Applications, Jul-Aug 2000,
20, 4, 62-67.

Wilson, A., and Benko, H., Combining multiple depth cameras and projectors for
interactions on, above and between surfaces. Proc. UIST 2010, 273-282.

Yang, J. and Wigdor, D. (2014). Panelrama: enabling easy specification of cross-
device web applications. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems – CHI’14 (pp.2783-2792). New York, NY, USA. ACM
Press.

SURFACE APPLICATIONS

Adeyemi, Taye. n.d. “Interact.js.” http://interactjs.io/ Accessed: 2015-21-08.

Akamatsu, M. et al. A comparison of tactile, auditory, and visual feedback in a
pointing task using a mouse-type device. Ergonomics. 38, (1995), 816–827.

437

Alberdi, E. et al. Effects of incorrect computer-aided detection (CAD) output on
human decision-making in mammography. Academic Radiology. 11, (2004), 909–
918.

Alizadeh, H., Tang, R., Sharlin, E., Tang, A.: Haptics in remote collaborative exercise
systems for seniors. In: Ext. Abs. CHI 2014, pp. 2401-2406 (2014) .

Anderson, F., Grossman, T., Matejka, J., Fitzmaurice, G.W.: YouMove: enhancing
movement training with an augmented reality mirror. In: Proc UIST 2013, pp. 311-
320 (2013).

Andersen, P.K. and Gill, R.D. Cox’s Regression Model for Counting Processes: A
Large Sample Study. The Annals of Statistics. 10, 4 (1982), 1100–1120.

André, P., schraefel, m. c., Teevan, J., and Dumais, S. T. Discovery is never by chance:
Designing for (un)serendipity. In Proc. of Creativity and Cognition (2009), 305–314.

G. Andrienko, N. Andrienko, S. Bremm, T. Schreck, T. Von Landesberger, P. Bak and
D. Keim, “Space-in-Time and Time-in-Space Self-Organizing Maps for Exploring
Spatiotemporal Patterns,” Computer Graphics Forum, vol. 29, no. 3, p. 913–922,
2010.

Andriole, K.P. et al. Optimizing analysis, visualization, and navigation of large image
data sets: one 5000-section CT scan can ruin your whole day. Radiology. 259, 2
(2011), 346–362.

Aseniero, B.A., Sharlin, E.: The looking glass: visually projecting yourself to the past.
In: Proc ICEC 2011, pp. 282-287 (2011).

Atkins, M.S. et al. Evaluating Interaction Techniques for Stack Mode Viewing. Journal
of digital imaging. 22, (2009), 369–382.

Baker, K., Greenberg, S., & Gutwin, C. (2001). Heuristic Evaluation of Groupware
Based on the Mechanics of Collaboration. In Proceedings of the 8th IFIP
International Conference on Engineering for Human-Computer Interaction (EHCI
’01) (pp. 123–140). Springer-Verlag. Retrieved from http://dl.acm.org/citation.
cfm?id=645350.650731.

Balakrishnan, R. et al. The Rockin’ Mouse : Integral 3D Manipulation on a Plane. In
Proceedings of CHI 97. (1997), 311–318.

Bang, J. The meaning of plot and narrative. In The computer as medium. Cambridge
University Press, Cambridge, New York, (1993) 209–220.

Bau, O. and Mackay, W. (2008) OctoPocus: a dynamic guide for learning gesture-
based command sets. In Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST 2008), 37-46.

M. U. A. Behnischa, “Urban data-mining: Spatiotemporal exploration of
multidimensional data,” Building Research & Information, vol. 37, no. 5-6, pp. 520-
532, 2010.

M. Belfqih, “Vodafone Fixed Network-Visualization Tool for ArcView GIS,” in ESRI
International User Conference 2003, San Diego, 2003.

Blackwell, Alan F., Carol Britton, Anna Louise Cox, Thomas R. G. Green, Corin A.
Gurr, Gada F. Kadoda, Maria Kutar, et al. 2001. “Cognitive Dimensions of Notations:
Design Tools for Cognitive Technology.” In 4th International Conference on Cognitive
Technology: Instruments of Mind, 325–41. CT ’01. London, UK, UK: Springer-Verlag.

Blackwell, Alan, and Thomas Green. 2003. “Notational Systems–the Cognitive
Dimensions of Notations Framework.” HCI Models, Theories, and Frameworks:

438

Toward an Interdisciplinary Science. Morgan Kaufmann.

E. Blevis, Y.-k. Lim, D. Roedl and E. Stolterman, “Using Design Critique as Research
to Link Sustainability and Interactive Technologies,” Online Communities and Social
Computing - Lecture Notes in Computer Science, vol. 4564, pp. 22-31, 2007.

Christophe Bortolaso, Matthew Oskamp, T.C. Nicholas Graham, and Doug Brown.
OrMiS: A Tabletop Interface for Simulation-Based Training. Proceedings of the 2013
ACM international conference on Interactive tabletops and surfaces – ITS ’13, ACM
Press, pp 145–154, 2013.

Christophe Bortolaso, Matthew Oskamp, Carl Gutwin, Greg Phillips and T.C.
Nicholas Graham, The Effect of View Techniques on Collaboration and Awareness in
Tabletop Map-Based Tasks, in Proceedings of the ACM International Conference on
Interactive Tabletops and Surfaces (ITS), 2014, pp 79-88.

Bostock, Michael, Vadim Ogievetsky, and Jeffrey Heer. 2011. “D〖^3〖 Data-Driven
Documents.” Visualization and Computer Graphics, IEEE Transactions on 17 (12).
IEEE: 2301–9.

Bostock, Mike. n.d. “Parallel Coordinates.” http://bl.ocks.org/mbostock/1341021
Accessed: 2015-21-08.

Brooke, J. (1996). SUS - A quick and dirty usability scale. In A. Jordan, Patrick,
W., Thomas, Bruce, Weerdmeester, Bernhard, A., McLelland, Ian (Ed.), Usability
Evaluation in Industry (pp. 189–194). CRC Press.

Brown, Judith M., Jeff Wilson, and Robert Biddle. 2014. “A Study of an Intelligence
Analysis Team and Their Collaborative Artifacts.” School of Computer Science
Technical Report TR-14-04 , Carleton Uni.

Brown, Judith M., Jeff Wilson, Stevenson Gossage, Chris Hack, and Robert Biddle.
2013. Surface Computing and Collaborative Analysis Work. Synthesis Lectures on
Human-Centered Informatics. Morgan & Claypool.

Brown, Judith, Jeff Wilson, Stevenson Gossage, Chris Hack, and Robert Biddle.
2013. Surface Computing and Collaborative Analysis Work. Synthesis Lectures on
Human-Centered Informatics 19. Morgan & Claypool Publishers.

Burton, M. n.d. “ACH:A free, open source tool for complex research problems.”
http://competinghypotheses.org/.

Buxton, B.: Sketching User Experiences: Getting the Design Right and the Right
Design. Morgan Kaufmann (2010).

Buxton, B.: Mediaspace–meaningspace–meetingspace. In: Media space 20+ years
of mediated life, pp. 217-231. Springer, London (2009).

Canadian Institute for Health Information: Physiotherapists in Canada, 2010:
National and Jurisdictional Highlights and Profiles (2011).

Carroll, E. A., Lottridge, D., Latulipe, C., Singh, V., Word, M.: Bodies in critique: a
technological intervention in the dance production process. In: Proc CSCW 2012,
pp. 705-714 (2012).

Cabana, F., Boissy, P., Tousignant, M., Moffet, H., Corriveau, H., Dumais, R.:
Interrater agreement between telerehabilitation and face-to-face clinical outcome
measurements for total knee arthroplasty. Telemedicine and e-Health, vol. 16, num.
3, 293-298 (2010).

Chang, Y., Chen, S., Huang, J.: A Kinect-based system for physical rehabilitation:
A pilot study for young adults with motor disabilities. Research in developmental

439

disabilities vol. 32, no. 6, 2566-2570 (2011).

Chatti, Mohamed Amine, Tim Sodhi, Marcus Specht, Ralf Klamma, and Roland
Klemke. 2006. “U-Annotate: An Application for User-Driven Freeform Digital Ink
Annotation of E-Learning Content.” In Advanced Learning Technologies, 2006.
Sixth International Conference on, 1039–43. IEEE.

A. Cockburn, Crystal Clear: A Human-Powered Methodology for Small Teams: A
Human-Powered Methodology for Small Teams, Addison-Wesley, 2004.

Colley, R. C., Garriguet, D., Janssen, I., Craig, C. L., Clarke, J., & Tremblay, M. S.
Physical activity of Canadian adults: Accelerometer results from the 2007 to 2009
Canadian Health Measures Survey. Health Reports, 22(1), 2011a, 1-8.

Colley, R. C., Garriguet, D., Janssen, I., Craig, C. L., Clarke, J., & Tremblay, M. S.
Physical activity of Canadian children and youth: accelerometer results from the
2007 to 2009 Canadian Health Measures Survey. Health Reports, 22(1), 2011b, 15-
23.

Conti, Greg. 2007. Security Data Visualization: Graphical Techniques for Network
Analysis. No Starch Press.

Contributors, Multiple. 2011. “Enron Email Dataset.” Available at: https://www.
cs.cmu.edu/~./enron/.

Cox, D.R. Regression Models and Life-Tables. Journal of the Royal Statistical Society.
34, (1972), 187–220.

Denoue, Laurent, and Laurence Vignollet. 2002. “Annotations in the Wild.” In ECAI
2002 Workshop on Semantic Authoring, Annotation & Knowledge Markup. Position
Paper.

Dix, A. (2002). Beyond intention-pushing boundaries with incidental interaction. In
Proceedings of Building Bridges: Interdisciplinary Context-Sensitive Computing,
Glasgow University (Vol. 9).

Dix, A. et al. Human-Computer Interaction in Radiotherapy Target Volume
Delineation: A Prospective, Multi-institutional Comparison of User Input Devices.
Journal of digital imaging. 24, (2010), 794–803.

DocsLogic Healthcare Solutions, “Geo-Spatial Network Analysis,” 2013. [Online].
Available: http://www.docslogic.com/32/de/solutions/Geospatial-Network-
Analysis. [Accessed June 2013].

Doi, K. Current status and future potential of computer-aided diagnosis in medical
imaging. The British journal of radiology. 78 Spec No, (2005), S3–S19.

Doucette, A., Gutwin, C., Mandryk, R. L., Nacenta, M., & Sharma, S. (2013). Sometimes
when we touch: how arm embodiments change reaching and collaboration on digital
tables. In Proceedings of the 2013 conference on Computer supported cooperative
work - CSCW ’13 (pp. 193–202). New York, New York, USA: ACM Press.

ECMAScript 2015 Language Specification.” 2015. Standard ECMA-262, Sixth
Edition. Sixth. Ecma International.

Efron, B. The Efficiency of Cox’s Likelihood Function for Censored Data. Journal of
the American Statistical Association. 72, 359 (1977), 557–565.

Egglin, T.K.P. Context Bias, A Problem in Diagnostic Radiology. Journal of the
American Medical Association. 276, 21 (1996), 1752.

S. G. Eick, A. Eick, J. Fugitt, J. E. Heath and M. Ross, “Geotemporal Analysis,” in
IEEE Aerospace Conference, Big Sky, MT, USA , 2008.

440

Engestrom, Yrjo. 1992. Interactive Expertise: Studies in Distributed Working
Intelligence. Research Bulletin 83. ERIC.

Engeström, Yrjö. 2000. “Activity Theory as a Framework for Analyzing and
Redesigning Work.” Ergonomics 43 (7): 960–74. ISI:000088268400012.

Erdelez, S. Information encountering: It’s more than just bumping into information.
Bulletin of the American Society for Information Science 25(3) (1999), 25–29.

Farah, Hanna, and Timothy C. Lethbridge. 2007. “Temporal Exploration of Software
Models: A Tool Feature to Enhance Software Understanding.” In Proceedings of
the 14th Working Conference on Reverse Engineering, 41–49. WCRE ’07. IEEE
Computer Society. doi:10.1109/WCRE.2007.49.

Forlines, C., & Shen, C. (2005). DTLens: multi-user tabletop spatial data exploration.
In Proceedings of the 18th annual ACM symposium on User interface software
and technology - UIST ’05 (pp. 119–122). New York, New York, USA: ACM Press.
doi:10.1145/1095034.1095055.

Foster, A., and Ford, N. Serendipity and information seeking: An empirical study.
Journal of Documentation 59(3) (2003), 321–340.

Freeman, D., et al. (2009) ShadowGuides: visualizations for in-situ learning of
multi-touch and whole-hand gestures. In Proceedings of the ACM International
Conference on Interactive Tabletops and Surfaces (ITS 2009), 165-172.

Gao, Y., & Mandryk, R. The acute cognitive benefits of casual exergame play. In
Proceedings of the ACM Conference on Human Factors in Computing Systems
(CHI), 2012, 1863-1872.

Gao, Y., Gerling, K.M., Mandryk, R.L., and Stanley, K.S. Decreasing sedentary
behavior among pre-adolescents using casual exergames at school. In Proceedings
of ACM SIGCHI Conference on Interactive Play (CHI PLAY). Toronto, Canada, 2014,
97-106.

Gardner, M. Mathematical Games – The fantastic combinations of John Conway’s
new solitaire game “life.” Scientific American, 1970, 120–123.

Gerling, K.M., Dergousoff, K.K., & Mandryk, R.L. Is Movement Better? Comparing
Sedentary and Motion-Based Game Controls for Older Adults. In Proceedings of
Graphics Interface, 2013, 133-140.

Gerling, K.M., Mandryk, R.L. Designing Video Games for Older Adults and
Caregivers. In Meaningful Play, 2014a, East Lansing, MI, USA. 24 pages.

Gerling, K.M., Miller, M.K., Mandryk, R.L., Birk, M., and Smeddinck, J. Effects of
balancing for physical abilities on player performance, experience and self-esteem in
exergames. In Proceedings of the CHI Conference on Human Factors in Computing
Systems (CHI), 2014b, 2201–2210.

Gerling, K.M., Mandryk, R.L., Linehan, C. Long-term use of motion-based video
games in care home settings. In Proceedings of the CHI Conference on Human
Factors in Computing Systems (CHI), 2015, 1573-1582.

Geyer, F., Pfeil, U., Höchtl, A., Budzinski, J., & Reiterer, H. (2011). Designing Reality-
Based Interfaces for Creative Group Work. In Proceedings of C&C ’11 (pp. 165–174).
New York, New York, USA: ACM Press. doi:10.1145/2069618.2069647.

Globalytica. n.d. “Globalytica Software Tools: Te@mACH.” http://www.globalytica.
com/thinksuite-html/.

441

Goffman, E. The Presentation of Self in Everyday Life. Doubleday Anchor Books,
New York, 1959.

Gonsalves, T., Frith, C., Critchley, H., Picard, R., and El Kaliouby, R. Chameleon.
2008. http://www.tinagonsalves.com/chamselectframe.html (accessed 7/11/2014).

Goyal, N. et al. Ergonomics in radiology. Clinical Radiology. 64, 2 (2009), 119–126.

Gutwin, C., & Greenberg, S. (1998). Design for individuals, design for groups:
tradeoffs between power and workspace awareness. In Proceedings of the 1998
ACM conference on Computer supported cooperative work - CSCW ’98 (pp. 207–
216). New York, New York, USA: ACM Press.

Gutwin, C., & Greenberg, S. (2002). A Descriptive Framework of Workspace
Awareness for Real-Time Groupware. Computer Supported Cooperative Work,
11(3-4), 411–446. doi:10.1023/A:1021271517844.

Hackman, J Richard. 2011. Collaborative Intelligence: Using Teams to Solve Hard
Problems. Berrett-Koehler Publishers.

Hancock, M. S., Carpendale, S., Vernier, F. D., & Wigdor, D. (2006). Rotation and
Translation Mechanisms for Tabletop Interaction. In First IEEE International Workshop
on Horizontal Interactive Human-Computer Systems (TABLETOP ’06) (pp. 79–88).
IEEE. doi:10.1109/TABLETOP.2006.26.

Heer, Jeffrey, Michael Bostock, and Vadim Ogievetsky. 2010. “A Tour Through the
Visualization Zoo.” Commun. Acm 53 (6): 59–67.

Heuer Jr., Richards J., and Randolph.H. Pherson. 2010. Structured Analytic
Techniques for Intelligence Analysis. CQ Press. http://books.google.ca/
books?id=ruGUQQAACAAJ.

Hill, G. Tall Ships. 1992. http://garyhill.com/left/work/tallships.html?q=569 (accessed
7/11/2014).

Hinckley, K. et al. Quantitative analysis of scrolling techniques. Proceedings of CHI
’02. 4 (2002), 65.

Hinckley, K. and Sinclair, M. Touch-sensing input devices. Proceedings of CHI ‘99.
pages, (1999), 223–230.

Hinrichs, U., Carpendale, S., & Scott, S. D. (2005). Interface currents: supporting
fluent face-to-face collaboration. In ACM SIGGRAPH 2005 Sketches on - SIGGRAPH
’05 (p. 142). New York, New York, USA: ACM Press.

Uta Hinrichs and Sheelagh Carpendale. Gestures in the Wild: Studying Multi-Touch
Gesture Sequences on Interactive Tabletop Exhibits. In CHI ‘11: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. (2011) 3023-3032.

O. Hoeber, G. Wilson, S. Harding, R. Enguehard and R. Devillers, “Exploring geo-
temporal differences using GTdiff,” in IEEE Pacific Visualization Symposium , Hong
Kong , 2011.

Hypothes.is. n.d. “Hypothes.is.” https://hypothes.is/ Accessed: 2015-21-08.

Inselberg, Alfred. 1997. “Multidimensional Detective.” In Information Visualization,
1997. Proceedings., IEEE Symposium on, 100–107. IEEE.

Inselberg, Alfred, and Bernard Dimsdale. 1990. “Parallel Coordinates: A Tool for
Visualizing Multi-Dimensional Geometry.” In Proceedings of the 1st Conference on
Visualization ’90, 361–78. VIS ’90. Los Alamitos, CA, USA: IEEE Computer Society
Press. http://dl.acm.org/citation.cfm?id=949531.949588.

442

Ishii, H., Kobayashi, M., Grudin, J.: Integration of interpersonal space and shared
workspace: ClearBoard design and experiments. ACM Trans. Inf. Syst. vol. 11, no.
4, 349-375 (1993).

Ion, A., Chang, Y.-L. B., Haller, M., Hancock, M., Scott, S. D., & Chang, B. (2013).
Canyon: Providing Location Awareness of Multiple Moving Objects in a Detail View
on Large Displays. In CHI 2013 (pp. 3149–3158). ACM.

Isenberg, P., D. Fisher, M.R. Morris, K. Inkpen, and M. Czerwinski. 2010. “An
Exploratory Study of Co-Located Collaborative Visual Analytics Around a Tabletop
Display.” In Visual Analytics Science and Technology (VAST), 2010 IEEE Symposium
on, 179–86.

Isenberg, P., Tang, A., & Carpendale, S. (2008). An exploratory study of visual
information analysis. In Proceedings of the twenty-sixth annual SIGCHI conference
on Human factors in computing systems (pp. 1217–1226).

S. Jänicke, C. Heine and G. Scheuermann, “Comparative visualization of geospatial-
temporal data,” Computer Vision, Imaging and Computer Graphics. Theory and
Application , vol. 359, pp. 160-175 , 2013.

Javed, W., Kim, K., Ghani, S., & Elmqvist, N. (2011). Evaluating physical/virtual
occlusion management techniques for horizontal displays, 391–408. Retrieved from
http://dl.acm.org/citation.cfm?id=2042182.2042218.

Khalilbeigi, M., Steimle, J., Riemann, J., Dezfuli, N., Mühlhäuser, M., & Hollan, J. D.
(2013). ObjecTop: occlusion awareness of physical objects on interactive tabletops.
In Proceedings of the 2013 ACM international conference on Interactive tabletops
and surfaces - ITS ’13 (pp. 255–264). New York, New York, USA: ACM Press.

Kingston, G.A., Williams, G., Gray, M.A., Judd, J.: Does a DVD improve compliance
with home exercise programs for people who have sustained a traumatic hand injury?
Results of a feasibility study. Disability and Rehabilitation: Assistive Technology, 1-7
(2013).

Kirk, D., Stanton Fraser, D.: Comparing remote gesture technologies for supporting
collaborative physical tasks. In: Proc CHI 2006, pp. 1191-1200 ACM (2006).

Kirsh, David, and Paul Maglio. 1994. “On Distinguishing Epistemic from Pragmatic
Action.” Cognitive Science 18 (4). Lawrence Erlbaum Associates, Inc.: 513–49.

Kobayashi, K., Narita, A., Hirano, M., Kase, I., Tsuchida, S., Omi, T., … Hosokawa,
T. (2006). Collaborative simulation interface for planning disaster measures. In CHI
’06 extended abstracts on Human factors in computing systems - CHI EA ‘06 (pp.
977–982). New York, New York, USA: ACM Press. doi:10.1145/1125451.1125639.

Kongsberg Gallium. (2013). InterMAPhics. Retrieved May 31, 2013, from http://
www.kongsberg.com/en/kds/kongsberggallium/products/intermaphics/.

Krasner, Glenn E, Stephen T Pope, and others. 1988. “A Description of the Model-
View-Controller User Interface Paradigm in the Smalltalk-80 System.” Journal of
Object Oriented Programming 1 (3): 26–49.

Krueger, M.W. Responsive Environments. Proc. of the June 13-16, National
Computer Conference, ACM (1977), 423–433.

Kruger, R., Carpendale, S., Scott, S. D., & Greenberg, S. (2004). Roles of Orientation
in Tabletop Collaboration: Comprehension, Coordination and Communication.
Computer Supported Cooperative Work (CSCW), 13(5-6), 501–537.

Kundel, H.L. et al. Visual scanning, pattern recognition and decision-making in
pulmonary nodule detection. Investigative Radiology. 13, (1978), 175–181.

443

Lai, J.C., Woo, J., Hui, E., Chan, W.M.: Telerehabilitation—a new model for
community-based stroke rehabilitation. Journal of telemedicine and telecare, vol.
10, num. 4, 199-205 (2004).

Ledo, D., Aseniero, B.A., Greenberg, S., Boring, S., Tang, A.: OneSpace: Shared
Depth-Corrected Video Interaction. In: Ext Abs of CHI 2013, pp. 997-1002 ACM
(2013).

Lee, Bongshin, P. Isenberg, N.H. Riche, and S. Carpendale. 2012. “Beyond Mouse
and Keyboard: Expanding Design Considerations for Information Visualization
Interactions.” Visualization and Computer Graphics, IEEE Transactions on 18 (12):
2689–98.

Lévesque, V. et al. Enhancing physicality in touch interaction with programmable
friction. Proceedings of CHI ‘11. 31, (2011), 2481–2490.

Liestman, D. Chance in the midst of design: approaches to library research
serendipity. RQ 31(4) (1992), 524—536.

Lindsay MacDonald, John Brosz, Miguel A. Nacenta and Sheelagh Carpendale.
Designing the Unexpected: Endlessly Fascinating Interaction for Interactive
Installations. In Proceedings of the Ninth International Conference on Tangible,
Embedded, and Embodied Interaction. (2015) 41-48.

A. Malik, R. Maciejewski, E. Hodgess and D. S. Ebert, “Describing temporal
correlation spatially in a visual analytics environment,” in Hawaii International
Conference on System Sciences, Kauai, HI, USA, 2011.

Mandryk, R.L., Gerling, K.M., and Stanley, K.S. Designing games to discourage
sedentary behavior. In Playful User Interfaces, Gaming Media and Social Effects. A.
Nijholt, ed. Springer, 2014, 253–274.

Manning, D.J. et al. Perception research in medical imaging. The British journal of
radiology. 78, 932 (Aug. 2005), 683–5.

Matejka, J. et al. Swifter: improved online video scrubbing. Proceedings of CHI ’13
(2013), 1159.

Mathie, A.G. and Strickland, N.H. Interpretation of CT scans with PACS image
display in stack mode. Radiology. 203, (1997), 207–209.

Miller, J.H. and Page, S.E. Complex Adaptive Systems: An Introduction to
Computational Models of Social Life. Princeton University press, 2009.

Morikawa, O., Maesako, T.: HyperMirror: toward pleasant-to-use video mediated
communication system. In: Proc CSCW 98, pp. 149-158. ACM (1998).

Morris, M. R., Ryall, K., Shen, C., Forlines, C., & Vernier, F. (2004). Beyond “social
protocols”: multi-user coordination policies for co-located groupware. In Proceedings
of the 2004 ACM conference on Computer supported cooperative work - CSCW ’04
(p. 262). New York, New York, USA: ACM Press.

Mueller, F., Vetere, F., Gibbs, M.R., Agamanolis, S., and Sheridan, J. Jogging over a
Distance: The influence of design in parallel exertion games. Proc. of the SIGGRAPH
Sandbox. 2010, 63–68.

T. Nagel, E. Duval and F. Heidmann, “Visualizing Geospatial Co-authorship Data on
a Multitouch Tabletop,” Smart Graphics - Lecture Notes in Computer Science, vol.
6815, pp. 134-137, 2011.

T. Nagel, E. Duval and A. V. Moere, “Interactive exploration of geospatial network
visualization,” in Extended Abstracts on Human Factors in Computing Systems,

444

New York, 2012.

Nass, C., Moon, Y., Fogg, B.J., Reeves, B., and Dryer, D.C. Can computer personalities
be human personalities? International Journal of Human-Computer Studies 43(2)
(1995), 223–239.

Nakatsu, R., Rauterberg, M., & Vorderer, P. (2005). A New Framework for Entertainment
Computing: From Passive to Active Experience. In F. Kishino, Y. Kitamura, H. Kato,
& N. Nagata (Eds.), Entertainment Computing - ICEC 2005 (Vol. 3711, pp. 1–12).
Berlin: Springer Berlin / Heidelberg.

Nayak, S., Zlatanova, S., Hofstra, H., Scholten, H., & Scotta, A. (2008). Multi-user
tangible interfaces for effective decision-making in disaster management. In S.
Nayak & S. Zlatanova (Eds.), Remote Sensing and GIS Technologies for Monitoring
and Prediction of Disasters (Environmen., pp. 243–266–266). Berlin, Heidelberg:
Springer Berlin Heidelberg.

Network, Mozilla Develop. n.d. “Proxy.” https://developer.mozilla.org/en/docs/
Web/JavaScript/Reference/Global_Objects/Proxy.

Network, Mozilla Developer. n.d. “ECMAScript 6 Support in Mozilla.” https://
developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/
ECMAScript_6_support_in_Mozilla.

Nóbrega, R., Sabino, A., Rodrigues, A., & Correia, N. (2008). Flood Emergency
Interaction and Visualization System. In M. Sebillo, G. Vitiello, & G. Schaefer (Eds.),
Visual Information Systems. Web-Based Visual Information Search and Management
(Vol. 5188, pp. 68–79). Berlin, Heidelberg: Springer Berlin Heidelberg.

Matthew Oskamp, Christophe Bortolaso, Robin Harrap, and T.C. Nicholas Graham.
TerraGuide: Design and Evaluation of a Multi-Surface Environment for Terrain
Visibility Analysis. In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems (CHI ‘15), May 2015, pp 3553-3562.

Oakley, I. et al. Tilt and Feel : Scrolling with Vibrotactile Display. Eurohaptics. (2004),
316-323.

Oram, L., MacLean, K., Kruchten, P., & Forster, B. (2014, June). Crafting diversity in
radiology image stack scrolling: control and annotations. InProceedings of the 2014
conference on Designing interactive systems (pp. 567-576).

Oxford English Dictionary. http://www.oed.com/view/
Entry/176387?redirectedFrom=serendipity#eid. Website visited Sept. 2011.

Palo Alto Research Center. 2010. “Analysis of Competing Hypotheses Software
Version ACH2.0.5.”

K. Patroumpas and T. Sellis, “Event processing and real-time monitoring over
streaming traffic data,” Web and Wireless Geographical Information Systems , vol.
7236, pp. 116-133, 2012.

Peek-Asa, C., Zwerling, C., Stallones, L.: Acute traumatic injuries in rural populations.
American journal of public health, vol. 94, num. 10, (2004).

Pirolli, Peter, and Stuart Card. 2005. “The Sensemaking Process and Leverage
Points for Analyst Technology as Identified Through Cognitive Task Analysis.” In
Proceedings of International Conference on Intelligence Analysis, 5:2–4.

Plimmer, Beryl, Samuel Hsiao-Heng Chang, Meghavi Doshi, Laura Laycock, and
Nilanthi Seneviratne. 2010. “Annotate: Exploring Multi-User Ink Annotation in
Web Browsers.” In Proceedings of the Eleventh Australasian Conference on User
Interface - Volume 106, 52–60. AUIC ’10. Darlinghurst, Australia, Australia: Australian

445

Computer Society, Inc.

Qin, Y., Liu, J., Wu, C., & Shi, Y. (2012). uEmergency: a collaborative system for
emergency management on very large tabletop. In Proceedings of the 2012 ACM
international conference on Interactive tabletops and surfaces - ITS ’12 (p. 399).
New York, New York, USA: ACM Press.

Remer, T. G. Serendipity of the Three Princes, from the Peregrinaggio of 557.
Norman, OK: University of Oklahoma Press, 1965.

K. P. Roe, M. Murphy and J. Schmidt, “Geo-temporal Visualization of Information
Collected from Large Databases Using the Time-Based COCOM Operational Picture
(TIMECOP) Server,” in DoD High Performance Computing Modernization Program
Users Group Conference, San Diego, CA, 2009.

Rogante, M., Grigioni, M., Cordella, D., Giacomozzi, C.: Ten years of telerehabilitation:
A literature overview of technologies and clinical applications. NeuroRehabilitation,
vol. 27, num. 4, 287-304 (2010).

Roman, P. A., & Brown, D. (2008). Games, Just How Serious Are They? In Proceedings
of Interservice/Industry Training, Simulation & Education Conference (p. 11 pages).

Rosenman, M. F. Serendipity and scientific discovery. Journal of Creative Behavior
22 (1988), 132–138.

Rubin, G.D. et al. Pulmonary nodules on multi-detector row CT scans: performance
comparison of radiologists and computer-aided detection. Radiology. 234, (2005),
274–283.

Russell, T.G., Buttrum, P., Wootton, R., Jull, G.A.: Internet-Based Outpatient
Telerehabilitation for Patients Following Total Knee ArthroplastyA Randomized
Controlled Trial. The Journal of Bone & Joint Surgery, vol. 93, num. 2, 113-120
(2011).

Salisbury, C., et al.: Effectiveness of PhysioDirect telephone assessment and
advice services for patients with musculoskeletal problems: pragmatic randomised
controlled trial. BMJ: British Medical Journal 346, (2013).

Sanford, J. A., Jones, M., Daviou, P., Grogg, K., Butterfield, T.: Using telerehabilitation
to identify home modification needs. Assistive Technology, vol. 16, num. 1, 43-53
(2004).

Savery, C., & Graham, T.C.N. (2012). Timelines: simplifying the programming of lag
compensation for the next generation of networked games. Multimedia Systems,
1 – 17.

Schmit, J. M., et al.: Dynamic patterns of postural sway in ballet dancers and track
athletes. Experimental Brain Research vol. 163, num. 3, 370-378 (2005).

Scott, S. D., Allavena, A., Cerar, K., Franck, G., Hazen, M., Shuter, T., … Scott, S. D. S.
D. S. D. (2010). Investigating Tabletop Interfaces to Support Collaborative Decision-
Making in Maritime Operations. In Proceedings of ICCRTS 2010: International
Command and Control Research and Technology Symposium. Santa Monica, CA,
USA, June 22-24.

Scott, S. D., Sheelagh, C., & Inkpen, K. M. (2004). Territoriality in collaborative
tabletop workspaces. In Proceedings of the 2004 ACM conference on Computer
supported cooperative work - CSCW ’04 (pp. 294 – 303). New York, New York, USA:
ACM Press.

S. D. Scott, K. D. Grant and R. L. Mandryk, “System Guidelines for Co-located,
Collaborative Work on a Tabletop Display,” in European Conference on Computer-

446

Supported Cooperative Work , Helsinki, Finland, 2003.

Segal, L.: Designing team workstations: The choreography of teamwork. Local
applications of the ecological approach to human-machine systems, 2 (1995).

Selim, E., & Maurer, F. (2010). EGrid: supporting the control room operation of
a utility company with multi-touch tables. In ACM International Conference on
Interactive Tabletops and Surfaces - ITS ’10 (p. 289). New York, New York, USA:
ACM Press.

Seyed, T., Costa Sousa, M., Maurer, F., & Tang, A. (2013). SkyHunter: A Multi-Surface
Environment for Supporting Oil and Gas Exploration. In Proceedings of the 2013
ACM international conference on Interactive tabletops and surfaces - ITS ’13 (pp.
15–22). New York, New York, USA: ACM Press.

Sherbondy, A.J. et al. 2005. Alternative Input Devices for Efficient Navigation of
Large CT Angiography Data Sets. Radiology. 234, (2005), 391–398.

Shneiderman, Ben. 1981. “Direct Manipulation: A Step Beyond Programming
Languages.” SIGSOC Bull. 13 (2-3). New York, NY, USA: ACM: 143.

Simon, Herbert A. 1956. “Rational Choice and the Structure of the Environment.”
Psychological Review 63 (2). American Psychological Association: 129.

Singh, V., Latiulipe, C., Carroll, E., Lottridge, D.: The choreographer’s notebook:
a video annotation system for dancers and choreographers. In: Proc C&C 11, pp.
197-206. (2011).

Snibbe, S.S. et al. Haptic techniques for media control. Proceedings of UIST 01. 3,
(2001), 199.

Sodhi, R., Benko, H., Wilson, A.: Lightguide: projected visualizations for hand
movement guidance. In: Proc CHI 2012, pp. 179-188. ACM (2012).

Statistics Canada: Canada’s rural population since 1851: Population and dwelling
counts, 2011 Census. (2012).

Stillman, B.C.: Making sense of proprioception: the meaning of proprioception,
kinaesthesia and related terms. Physiotherapy vol. 88, no. 11, pp. 667-676. (2002).

Swanson, J.O. et al. Optimizing peer review: A year of experience after instituting
a real-time comment-enhanced program at a children’s hospital. AJR. American
journal of roentgenology. 198, 5 (2012), 1121–5.

Szymanski, R., Goldin, M., Palmer, N., Beckinger, R., Gilday, J., & Chase, T.
(2008). Command and Control in a Multitouch Environment. 26th Army Science
Conference. Orlando, Florida. Retrieved from http://www.dtic.mil/cgi-bin/
GetTRDoc?AD=ADA503423.

Tang, A., Pahud, M., Inkpen, K., Benko, H., Tang, J.C., Buxton, B.: Three’s company:
understanding communication channels in three-way distributed collaboration. In:
Proc CSCW 2010, pp. 271-280 ACM (2010).

Tang, A., Tory, M., Po, B., Neumann, P., & Carpendale, S. (2006). Collaborative
coupling over tabletop displays. In Proceedings of the SIGCHI conference on
Human Factors in computing systems CHI 06 (Vol. pp, pp. 1181–1190). ACM Press.

Tang, J.C., Minneman, S.L.: VideoDraw: a video interface for collaborative drawing.
ACM TOIS vol. 9, no. 2, pp. 170-184 (1991).

Tang, R., Yang, X., Bateman, S., Jorge, J., Tang, A. Physio@Home: Exploring Visual
Guidance and Feedback Techniques for Physiotherapy Exercises. In: Proc CHI 2015,
pp. 4123-4132.

447

Thomassen, B. The uses and meanings of liminality. International Political
Anthropology 2, 1 (2009), 5–27.

Alice Thudt, Uta Hinrichs and Sheelagh Carpendale. The Bohemian Bookshelf:
Supporting Serendipitous Book Discoveries through Information Visualization. In
CHI ‘12: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 2012.

Tousignant, M., et al.: Patients’ satisfaction of healthcare services and perception
with in-home telerehabilitation and physiotherapists’ satisfaction toward technology
for post-knee arthroplasty: an embedded study in a randomized trial. Telemedicine
and e-Health, 17(5), 376-382 (2011).

Tousignant, M., et al.: A randomized controlled trial of home telerehabilitation for
post-knee arthroplasty. Journal of Telemedicine and Telecare, vol. 17, no. 4, 195-198
(2011).

Tremblay, M.S., Colley, R., Saunders, T.J., Healy, G.N., and Owen, N. Physiological
and health implications of a sedentary lifestyle. Applied Physiology, Nutrition, and
Metabolism 35, 6 (2010), 725–740.

van Andel, P. Anatomy of unsought finding. serendipity: Origin, history, domains,
traditions, appearances, patterns, and programmability. The British Journal for the
Philosophy of Science 45, 2 (1994), 631–648.

Velloso, E., Bulling, A., Gellersen, H.: MotionMA: motion modelling and analysis by
demonstration. In: Proc CHI 2013, pp. 1309-1318. ACM (2013).

Villar, N. et al. 2009. Mouse 2.0: multi-touch meets the mouse. Proceedings of UIST
09. (2009), 33–42.

Vogel, D. and Baudisch, P. Shift: A Technique for Operating Pen-Based Interfaces
Using Touch. Proceedings of CHI ’07 (2007).

Waldrop, M.M. Complexity: The emerging science at the edge of order and chaos.
Simon and Schuster, New York, 1992.

Wallace, J. R., Scott, S. D., & MacGregor, C. G. (2013). Collaborative sensemaking
on a digital tabletop and personal tablets. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems - CHI ’13 (p. 3345). New York, New York,
USA: ACM Press.

Wang, F. and Ren, X. Empirical evaluation for finger input properties in multi-touch
interaction. Proceedings of CHI 09. (2009), 1063.

Wharton, C., J. Bradford, R. Jeffries, and M. Franzke. 1992. “Applying Cognitive
Walkthroughs to More Complex User Interfaces: Experiences, Issues, and
Recommendations.” In ACM Conference on Human Factors in Computing Systems
(CHI).

Wilson, Jeff, Judith M. Brown, and Robert Biddle. 2014. “Interactive Parallel
Coordinates for Collaborative Intelligence Analysis.” School of Computer Science
Technical Report TR-14-05, Carleton Uni.

Xiao, X., Ishii, H.: MirrorFugue: communicating hand gesture in remote piano
collaboration. In: Proc TEI 2011, pp. 13-20. ACM (2011).

Yarosh, S., Tang, A., Mokashi, S., Abowd, G.D.: Almost Touching: Parent-child
remote communication using the sharetable system. In: Proc CSCW 2013, pp. 181-
192 ACM (2013).

Zeeman, E.C. Catastrophe Theory. Scientific American, 1976, 65–83.

448

H. Zhang, M. Korayem, You, Erkang and D. J. Crandall, “Beyond co-occurrence:
Discovering and visualizing tag relationships from geo-spatial and temporal
similarities,” in ACM International Conference on Web Search and Data Mining,
New York, 2012.

SURFNET / Designing Digital Surface
Applications is a compendium of
research findings from a Canadian
research network that integrated
innovative research in two critical areas
–software engineering (SE) and human-
computer interaction (HCI)– to identify
critical requirements, design new
engineering processes, and build new
tools for surface-based application
development. Funded by the Natural
Sciences and Engineering Research
Council of Canada (NSERC) from 2009
to 2015, SurfNet’s research clustered
around three themes: Humanizing
the Digital Interface, Improving
Software Time to Market and Building
Infrastructure for Digital Surfaces.
Research was driven by the needs
of four application areas: Planning,
Monitoring and Control Environments;
Learning, Gaming, New Media and
Digital Homes; Software Team Rooms;
and Health Technologies.

